×

Towards semi-classical analysis for sub-elliptic operators. (English) Zbl 1500.43006

“Bruno Pini” Mathematical Analysis Seminar 2021. Papers from the seminar, University of Bologna, Bologna, Italy, 2021. Bologna: Università di Bologna, Alma Mater Studiorum. 31-52 (2022).
Summary: We discuss the recent developments of semi-classical and micro-local analysis in the context of nilpotent Lie groups and for sub-elliptic operators. In particular, we give an overview of pseudo-differential calculi recently defined on nilpotent Lie groups as well as of the notion of quantum limits in the Euclidean and nilpotent cases.
For the entire collection see [Zbl 1487.35004].

MSC:

43A80 Analysis on other specific Lie groups
58J45 Hyperbolic equations on manifolds
35Q40 PDEs in connection with quantum mechanics

References:

[1] A. Agrachev, D. Barilari and U. Boscain,A comprehensive introduction to sub-Riemannian geometry, Cambridge Studies in Advanced Mathematics,181, Cambridge University Press, Cambridge, 2020. · Zbl 1487.53001
[2] N. Anantharaman, C. Fermanian Kammerer and F. Maci‘a. Long-time dynamics of completely integrable Schrodinger flows on the torus,Amer. J. Math,137(2015), No 3, pp 577-638. · Zbl 1319.35207
[3] H. Bahouri, J.-Y. Chemin and R. Danchin, Tempered distributions and Fourier transform on the Heisenberg group,Ann. H. Lebesgue,1, 2018, pp 1-46. · Zbl 1422.43006
[4] H. Bahouri, C. Fermanian-Kammerer and I. Gallagher,Phase-space analysis and pseudodifferential calculus on the Heisenberg group, Ast´erisque,342, 2012. · Zbl 1246.35003
[5] H. Bahouri, C. Fermanian Kammerer and I. Gallagher. Dispersive estimates for the Schr¨odinger operator on step 2 stratified Lie Groups,Analysis and PDEs,9, 2016, No 3, pp 545-574. · Zbl 1515.35044
[6] H. Bahouri, P. G´erard and C.-J. Xu. Espaces de Besov et estimations de Strichartz g´en´eralis´ees sur le groupe de Heisenberg,Journal d’Analyse Math´ematique,82, 2000, pp 93-118. · Zbl 0965.22010
[7] A. Baldi, B. Franchi and M. C. Tesi, Compensated compactness in the contact complex of Heisenberg groups,Indiana Univ. Math. J.,57, 2008, No 1, pp 133-185. · Zbl 1143.43007
[8] A. Baldi, B. Franchi and M. C. Tesi, Differential forms, Maxwell equations and compensated compactness in Carnot groups,Geometric methods in PDE’s, Lect. Notes Semin. Interdiscip. Mat., 7, pp 21-40. · Zbl 1187.58005
[9] R. Beals and P. Greiner, Calculus on Heisenberg manifolds, Annals of Mathematics Studies,119, Princeton University Press, Princeton, NJ, 1988. · Zbl 0654.58033
[10] A. Bella¨ıche, The tangent space in sub-Riemannian geometry, inSub-Riemannian geometry, Progr. Math.,144, pp 1-78, Birkh¨auser, Basel, 1996. · Zbl 0862.53031
[11] M. Bramanti,An invitation to hypoelliptic operators and H¨ormander’s vector fields, SpringerBriefs in Mathematics, Springer, Cham, 2014. · Zbl 1298.47001
[12] N. Burq, C. Sun. Time optimal observability for Grushin Schr¨odinger equation (arXiv:1910.03691).
[13] V. Chabu, C. Fermanian Kammerer and F. Maci‘a. Semiclassical analysis of dispersion phenomena, inAnalysis and partial differential equations: perspectives from developing countries, Springer Proc. Math. Stat.,275, pp 84-108, Springer, Cham, 2019. · Zbl 1414.35189
[14] W. Choi and R. Ponge, Tangent maps and tangent groupoid for Carnot manifolds,Differential Geom. Appl.,62, 2019, pp 136-183. · Zbl 1410.53034
[15] Y. Colin de Verdi‘ere, Ergodicit´e et fonctions propres du laplacien,Comm. Math. Phys.,102, 1985, No 3, pp 497-502. · Zbl 0592.58050
[16] Y. Colin de Verdi‘ere, L. Hillairet, E. Tr´elat. Spectral asymptotics for sub-Riemannian Laplacians. I: quantum ergodicity and quantum limits in the 3D contact case,Duke Math. J.,167, 2018, No 1, pp 109-174 · Zbl 1388.35137
[17] A. Connes,Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. · Zbl 0818.46076
[18] T. O. Cordes and E. A. Herman, Gelfand theory of pseudo differential operators,Amer. J. Math., 90, 1968, pp 681-717. · Zbl 0169.47105
[19] T. O. Cordes,Elliptic pseudodifferential operators—an abstract theory, Lecture Notes in Mathematics,756, Springer, Berlin, 1979. · Zbl 0417.35004
[20] T. O. Cordes,Spectral theory of linear differential operators and comparison algebras, London Mathematical Society Lecture Note Series,76, Cambridge University Press, Cambridge, 1987. · Zbl 0727.35092
[21] T. O. Cordes,The technique of pseudodifferential operators, London Mathematical Society Lecture Note Series,202, Cambridge University Press, Cambridge, 1995. · Zbl 0828.35145
[22] S. Dave and S. Haller, The heat asymptotics on filtered manifolds,J. Geom. Anal.,30, 2020, No 1, pp 337-389. · Zbl 1434.58010
[23] C. Fefferman and D.H. Phong, The uncertainty principle and sharp G ˙arding inequalities,Comm. Pure Appl. Math.,34, 1981, No 3, pp 285-331. · Zbl 0458.35099
[24] C. Fermanian Kammerer and V. Fischer, Semi-classical analysis on H-type groups,Sci. China Math.,62, 2019, No 6, pp 1057-1086. · Zbl 1430.35284
[25] C. Fermanian Kammerer and V. Fischer, Defect measures on graded Lie groups.Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),21, 2020, pp 207-291. · Zbl 1469.35272
[26] C. Fermanian Kammerer and V. Fischer, Quantum evolution and sub-Laplacian operators on groups of Heisenberg type.J. Spectr. Theory,11, 2021, No 3, pp 1313-1367. · Zbl 1484.58014
[27] C. Fermanian Kammerer and C. Letrouit, Observability and Controllability for the Schr¨odinger Equation on Quotients of Groups of Heisenberg Type.J. ´Ec. polytech. Math.,8, 2021, pp 1459- 1513. · Zbl 1475.35377
[28] V. Fischer and M. Ruzhansky, Quantization on nilpotent Lie groups,Progress in Mathematics, 314, Birkh¨auser Basel, 2016. · Zbl 1347.22001
[29] G. Folland and E. Stein, Estimates for the ¯∂bcomplex and analysis on the Heisenberg group, Comm. Pure Appl. Math.,27, 1974, pp 429-522. · Zbl 0293.35012
[30] G. Folland and E. Stein, Hardy spaces on homogeneous groups,Mathematical Notes,28, Princeton University Press, 1982. · Zbl 0508.42025
[31] B. Franchi, Div-curl theorem in the Heisenberg group, inMathematical Analysis Seminar, University of Bologna Department of Mathematics: Academic Year 2003/2004. Academic Year 2004/2005 (Italian), 1-11, Tecnoprint, Bologna, 2007. · Zbl 1204.35168
[32] B. Franchi, N. Tchou and M.C. Tesi, Div-curl type theorem,H-convergence and Stokes formula in the Heisenberg group,Commun. Contemp. Math.,8, 2006, No 1, 67-99. · Zbl 1092.35008
[33] P. G´erard, Microlocal defect measures,Commun. in PDE,16, 1991, No 11, pp 1761-1794. · Zbl 0770.35001
[34] P. G´erard, Mesures semi-classiques et ondes de Bloch. InS´eminaire sur les ´Equations aux D´eriv´ees Partielles, 1990-1991, pages Exp. No. XVI, 19. ´Ecole Polytech., Palaiseau, 1991. · Zbl 0739.35096
[35] P. G´erard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem.Duke Math. J.,71, 1993, No 2, pp 559-607. · Zbl 0788.35103
[36] P. G´erard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization limits and Wigner transforms.Comm. Pure Appl. Math.,50, 1997, No 4, pp 323-379. · Zbl 0881.35099
[37] M. Gromov, Carnot-Carath´eodory spaces seen from within, inSub-Riemannian geometry, Progr. Math.,144, pp 79-323, Birkh¨auser, Basel, 1996. · Zbl 0864.53025
[38] B. Helffer, and A. Martinez, and D. Robert, Ergodicit´e et limite semi-classique,Comm. Math. Phys.,109, 1987, No 2, pp 313-326. · Zbl 0624.58039
[39] M. Del Hiero. Dispersive and Strichartz estimates on H-type groups,Studia Math, 169 (2005), pp 1-20. · Zbl 1076.22010
[40] L. H¨ormander, Hypoelliptic second order differential equations,Acta Math.,119, 1967, pp 147-171. · Zbl 0156.10701
[41] P.-L. Lions et T. Paul. Sur les mesures de Wigner.Rev. Mat. Iberoamericana,9, 1993, No 3, pp 553-618. · Zbl 0801.35117
[42] R. Montgomery,A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs,91, American Mathematical Society, Providence, RI, 2002. · Zbl 1044.53022
[43] A. Nagel, and E. Stein and S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math.,155, 1985, No 1-2, pp 103-147. · Zbl 0578.32044
[44] A. Parmeggiani, Subunit balls for symbols of pseudodifferential operators,Adv. Math.,131, 1997, No 2, pp 357-452. · Zbl 0940.35214
[45] R. Ponge,Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Mem. Amer. Math. Soc.,194, 2008, No 906. · Zbl 1143.58014
[46] L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups,Acta Math., 137, 1976, No 3-4, pp 247-320. · Zbl 0346.35030
[47] A. S´anchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields,Invent. Math.,78, 1984, No 1, pp 143-160. · Zbl 0582.58004
[48] A. I. ˇSnirelman, Ergodic properties of eigenfunctions,Uspehi Mat. Nauk,29, 1974, No 6(180), pp 181-182. · Zbl 0324.58020
[49] R. Strichartz, Sub-Riemannian geometry,J. Differential Geom.,24, 1986, No 2, pp 221-263. · Zbl 0609.53021
[50] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,Proc. Roy. Soc. Edinburgh, Sect. A, 115 (1990), 193-230. · Zbl 0774.35008
[51] M. Taylor, Gelfand theory of pseudo differential operators and hypoelliptic operators, Trans. Amer. Math. Soc.,153, 1971, pp 495-510. · Zbl 0207.45402
[52] M. Taylor,Noncommutative harmonic analysis, Mathematical Surveys and Monographs,22, American Mathematical Society, Providence, RI, 1986. · Zbl 0604.43001
[53] E. van Erp, The Atiyah-Singer index formula for subelliptic operators on contact manifolds. Parts I & II,Ann. of Math. (2),171, 2010, No 3, pp 1647-1681 & 1683-1706. · Zbl 1206.19004
[54] E. van Erp and R. Yuncken, A groupoid approach to pseudodifferential calculi,J. Reine Angew. Math.,756, 2019, pp 151-182. · Zbl 1433.58025
[55] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces,Duke Math. J., 55, 1987, No 4, pp 919-941. · Zbl 0643.58029
[56] S. Zelditch. Index and dynamics of quantized contact transformations.Ann. Inst. Fourier (Grenoble)47, 1997, No 1, pp 305-363. · Zbl 0865.47018
[57] M. Zworski,Semiclassical analysis, Graduate Studies in Mathematics,138, American Mathematical Society, Providence, RI, 2012 · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.