×

The spectral difference Raviart-Thomas method for two and three-dimensional elements and its connection with the flux reconstruction formulation. (English) Zbl 1503.65269

Summary: The purpose of this work is to describe in detail the development of the spectral difference Raviart-Thomas (SDRT) formulation for two and three-dimensional tensor-product elements and simplexes. Through the process, the authors establish the equivalence between the SDRT method and the flux reconstruction (FR) approach under the assumption of the linearity of the flux and the mesh uniformity. Such a connection allows building a new family of FR schemes for two and three-dimensional simplexes and also to recover the well-known FR-SD method with tensor-product elements. In addition, a thorough analysis of the numerical dissipation and dispersion of both aforementioned schemes and the nodal discontinuous Galerkin FR (FR-DG) method with two and three-dimensional elements is proposed through the use of the combined-mode Fourier approach. SDRT is shown to possess an enhanced temporal linear stability in comparison to FR-DG. On the contrary, SDRT displays larger dissipation and dispersion errors with respect to FR-DG. Finally, the study is concluded with a set of numerical experiments, the linear advection-diffusion problem, the Isentropic Euler Vortex, and the Taylor-Green Vortex (TGV). The latter test case shows that SDRT schemes present a non-linear unstable behavior with simplex elements and certain polynomial degrees. For the sake of completeness, the matrix form of the SDRT method is developed and the computational performance of SDRT with respect to FR schemes is evaluated using GPU architectures.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
65Y10 Numerical algorithms for specific classes of architectures

References:

[1] Abe, Y.; Haga, T.; Nonomura, T.; Fujii, K., On the freestream preservation of high-order conservative flux-reconstruction schemes, J. Comput. Phys., 281, 28-54 (2015) · Zbl 1352.65415 · doi:10.1016/j.jcp.2014.10.011
[2] Abe, Y.; Morinaka, I.; Haga, T.; Nonomura, T.; Shibata, H.; Miyaji, K., Stable, non-dissipative, and conservative flux-reconstruction schemes in split forms, J. Comput. Phys., 353, 193-227 (2018) · Zbl 1380.76091 · doi:10.1016/j.jcp.2017.10.007
[3] Abgrall, R.; Le Mélédo, É.; Öffner, P., General polytopal h (div)-conformal finite elements and their discretisation spaces, ESAIM Math. Model. Numer. Anal., 55, S677-S704 (2021) · Zbl 1477.65184 · doi:10.1051/m2an/2020048
[4] Abgrall, R., Meledo, E.l., Oeffner, P.: On the connection between residual distribution schemes and flux reconstruction (2018). arXiv preprint arXiv:1807.01261
[5] Alhawwary, M.; Wang, Z., Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws, J. Comput. Phys., 373, 835-862 (2018) · Zbl 1416.65252 · doi:10.1016/j.jcp.2018.07.018
[6] Alhawwary, M.; Wang, Z., A combined-mode Fourier analysis of DG methods for linear parabolic problems, J. Sci. Comput., 42, 6, A3825-A3858 (2020) · Zbl 1456.65101 · doi:10.1137/20m1316962
[7] Asthana, K.; Watkins, J.; Jameson, A., On consistency and rate of convergence of flux reconstruction for time-dependent problems, J. Comput. Phys., 334, 367-391 (2017) · Zbl 1380.65201 · doi:10.1016/j.jcp.2017.01.008
[8] Balan, A., May, G., Schöberl, J.: A stable spectral difference method for triangles. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics (2011). doi:10.2514/6.2011-47 · Zbl 1242.65155
[9] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 2, 251-285 (1997) · Zbl 0902.76056 · doi:10.1006/jcph.1997.5454
[10] Bergot, M.; Duruflé, M., Approximation of h(div) with high-order optimal finite elements for pyramids, prisms and hexahedra, Commun. Comput. Phys., 14, 5, 1372-1414 (2013) · Zbl 1388.65142 · doi:10.4208/cicp.120712.080313a
[11] Butcher, JC, Numerical Methods for Ordinary Differential Equations (2016), New York: Wiley, New York · Zbl 1354.65004 · doi:10.1002/9781119121534
[12] Carpenter, M., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes (1994)
[13] Castonguay, P.: High-order energy stable flux reconstruction schemes for fluid flow simulations on unstructured grids. Ph.D. thesis, Stanford (2012)
[14] Castonguay, P.; Vincent, PE; Jameson, A., A new class of high-order energy stable flux reconstruction schemes for triangular elements, J. Sci. Comput., 51, 1, 224-256 (2011) · Zbl 1457.65101 · doi:10.1007/s10915-011-9505-3
[15] Cockburn, B.; Shu, C-W, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/s0036142997316712
[16] Cox, C.; Trojak, W.; Dzanic, T.; Witherden, F.; Jameson, A., Accuracy, stability, and performance comparison between the spectral difference and flux reconstruction schemes, Comput. Fluids, 221 (2021) · Zbl 1521.76196 · doi:10.1016/j.compfluid.2021.104922
[17] DeBonis, J.: Solutions of the taylor-green vortex problem using high-resolution explicit finite difference methods. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics (2013). doi:10.2514/6.2013-382
[18] Frean, DJ; Ryan, JK, Superconvergence and the numerical flux: a study using the upwind-biased flux in discontinuous Galerkin methods, Commun. Appl. Math. Comput., 2, 3, 461-486 (2019) · Zbl 1476.65240 · doi:10.1007/s42967-019-00049-2
[19] Glaubitz, J.; Öffner, P.; Sonar, T., Application of modal filtering to a spectral difference method, Math. Comput., 87, 309, 175-207 (2017) · Zbl 1376.65133 · doi:10.1090/mcom/3257
[20] Guo, W.; Zhong, X.; Qiu, J-M, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on fourier approach, J. Comput. Phys., 235, 458-485 (2013) · Zbl 1291.65299 · doi:10.1016/j.jcp.2012.10.020
[21] Haga, T., Gao, H., Wang, Z.: A high-order unifying discontinuous formulation for 3-D mixed grids. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 540 (2010)
[22] Haga, T.; Gao, H.; Wang, ZJ, A high-order unifying discontinuous formulation for the Navier-Stokes equations on 3D mixed grids, Math. Model. Nat. Phenom., 6, 3, 28-56 (2011) · Zbl 1239.76044 · doi:10.1051/mmnp/20116302
[23] Hesthaven, J., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2008), New York: Springer, New York · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[24] Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2007). doi:10.2514/6.2007-4079
[25] Huynh, HT, Discontinuous Galerkin via interpolation: the direct flux reconstruction method, J. Sci. Comput., 82, 3, 25 (2020) · Zbl 1445.76062 · doi:10.1007/s10915-020-01175-3
[26] Iyer, AS; Witherden, FD; Chernyshenko, SI; Vincent, PE, Identifying eigenmodes of averaged small-amplitude perturbations to turbulent channel flow, J. Fluid Mech., 875, 758-780 (2019) · Zbl 1430.76308 · doi:10.1017/jfm.2019.520
[27] Jameson, A., A proof of the stability of the spectral difference method for all orders of accuracy, J. Sci. Comput., 45, 1-3, 348-358 (2010) · Zbl 1203.65198 · doi:10.1007/s10915-009-9339-4
[28] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford: Oxford University Press, Oxford · Zbl 1116.76002 · doi:10.1093/acpro:oso/9780198528692.001.0001
[29] Kopriva, DA, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J. Comput. Phys., 128, 2, 475-488 (1996) · Zbl 0866.76064 · doi:10.1006/jcph.1996.0225
[30] Kopriva, DA, Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301-327 (2006) · Zbl 1178.76269 · doi:10.1007/s10915-005-9070-8
[31] Li, M.; Qiu, Z.; Liang, C.; Sprague, M.; Xu, M.; Garris, CA, A new high-order spectral difference method for simulating viscous flows on unstructured grids with mixed-element meshes, Comput. Fluids, 184, 187-198 (2019) · Zbl 1519.76214 · doi:10.1016/j.compfluid.2019.03.010
[32] Liu, Y.; Vinokur, M.; Wang, Z., Spectral difference method for unstructured grids I: basic formulation, J. Comput. Phys., 216, 2, 780-801 (2006) · Zbl 1097.65089 · doi:10.1016/j.jcp.2006.01.024
[33] Lodato, G., Characteristic modal shock detection for discontinuous finite element methods, Comput. Fluids, 179, 309-333 (2019) · Zbl 1411.76067 · doi:10.1016/j.compfluid.2018.11.008
[34] Lodato, G.; Vervisch, L.; Clavin, P., Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns, J. Fluid Mech., 789, 221-258 (2016) · doi:10.1017/jfm.2015.731
[35] Loppi, N.; Witherden, F.; Jameson, A.; Vincent, P., A high-order cross-platform incompressible Navier-Stokes solver via artificial compressibility with application to a turbulent jet, Comput. Phys. Commun., 233, 193-205 (2018) · Zbl 07694822 · doi:10.1016/j.cpc.2018.06.016
[36] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., Design of a smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods, Comput. Fluids, 200 (2020) · Zbl 1519.76095 · doi:10.1016/j.compfluid.2020.104440
[37] Manzanero, J., Rubio, G., Kopriva, D., Ferrer, E., Valero, E.: Entropy-stable discontinuous galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes equations with variable density and artificial compressibility (2020b). arXiv:1907.05976 · Zbl 07505602
[38] Mengaldo, G.; Grazia, DD; Vincent, PE; Sherwin, SJ, On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes, J. Sci. Comput., 67, 3, 1272-1292 (2015) · Zbl 1342.65196 · doi:10.1007/s10915-015-0119-z
[39] Mozolevski, I., Valmorbida, E.L.: Efficient equilibrated flux reconstruction in high order Raviart-Thomas space for discontinuous Galerkin methods. In: Lecture Notes in Computational Science and Engineering, pp. 467-479. Springer (2017). doi:10.1007/978-3-319-65870-4_33 · Zbl 1382.65416
[40] Navah, F.; de la Llave Plata, M.; Couaillier, V., A high-order multiscale approach to turbulence for compact nodal schemes, Comput. Methods Appl. Mech. Eng., 363 (2020) · Zbl 1436.76014 · doi:10.1016/j.cma.2020.112885
[41] Olson, BJ; Shaw, SW; Shi, C.; Pierre, C.; Parker, RG, Circulant matrices and their application to vibration analysis, Appl. Mech. Rev. (2014) · doi:10.1115/1.4027722
[42] Park, JS; Witherden, FD; Vincent, PE, High-order implicit large-eddy simulations of flow over a NACA0021 aerofoil, AIAA J., 55, 7, 2186-2197 (2017) · doi:10.2514/1.j055304
[43] Pazner, W., Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting, Comput. Methods Appl. Mech. Eng., 382 (2021) · Zbl 1506.65159 · doi:10.1016/j.cma.2021.113876
[44] Peraire, J.; Persson, P-O, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 4, 1806-1824 (2008) · Zbl 1167.65436 · doi:10.1137/070685518
[45] Pereira, CA; Vermeire, BC, Fully-discrete analysis of high-order spatial discretizations with optimal explicit Runge-Kutta methods, J. Sci. Comput. (2020) · Zbl 1442.65221 · doi:10.1007/s10915-020-01243-8
[46] Pereira, CA; Vermeire, BC, Spectral properties of high-order element types for implicit large eddy simulation, J. Sci. Comput. (2020) · Zbl 1457.65236 · doi:10.1007/s10915-020-01329-3
[47] Shu, C-W, High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments, J. Comput. Phys., 316, 598-613 (2016) · Zbl 1349.65486 · doi:10.1016/j.jcp.2016.04.030
[48] Spiegel, S.C., Huynh, H., DeBonis, J.R.: De-aliasing through over-integration applied to the flux reconstruction and discontinuous Galerkin methods. In: 22nd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2015). doi:10.2514/6.2015-2744
[49] Spiegel, S.C., Huynh, H., DeBonis, J.R.: A survey of the isentropic Euler vortex problem using high-order methods. In: 22nd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2015). doi:10.2514/6.2015-2444
[50] Toro, E.F.: The HLL and HLLC Riemann solvers. In: Riemann Solvers and Numerical Methods for Fluid Dynamics, pp. 315-339. Springer, Berlin (1999). doi:10.1007/978-3-662-03915-1_10 · Zbl 0923.76004
[51] Trojak, W.; Watson, R.; Scillitoe, A.; Tucker, PG, Effect of mesh quality on flux reconstruction in multi-dimensions, J. Sci. Comput. (2020) · Zbl 1437.65146 · doi:10.1007/s10915-020-01184-2
[52] Van den Abeele, K.; Lacor, C.; Wang, ZJ, On the stability and accuracy of the spectral difference method, J. Sci. Comput., 37, 2, 162-188 (2008) · Zbl 1203.65132 · doi:10.1007/s10915-008-9201-0
[53] van Rees, WM; Leonard, A.; Pullin, D.; Koumoutsakos, P., A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, J. Comput. Phys., 230, 8, 2794-2805 (2011) · Zbl 1316.76066 · doi:10.1016/j.jcp.2010.11.031
[54] Vanharen, J.; Puigt, G.; Vasseur, X.; Boussuge, J-F; Sagaut, P., Revisiting the spectral analysis for high-order spectral discontinuous methods, J. Comput. Phys., 337, 379-402 (2017) · Zbl 1415.76577 · doi:10.1016/j.jcp.2017.02.043
[55] Veilleux, A.: Extension of the spectral difference method to simplex cells and hybrid grids. Ph.D. thesis, CERFACS (2021)
[56] Veilleux, A.; Puigt, G.; Deniau, H.; Daviller, G., A stable spectral difference approach for computations with triangular and hybrid grids up to the 6 order of accuracy, J. Comput. Phys., 449 (2022) · Zbl 07524772 · doi:10.1016/j.jcp.2021.110774
[57] Vermeire, B.; Vincent, P., On the behaviour of fully-discrete flux reconstruction schemes, Comput. Methods Appl. Mech. Eng., 315, 1053-1079 (2017) · Zbl 1439.65121 · doi:10.1016/j.cma.2016.11.019
[58] Vincent, P.; Castonguay, P.; Jameson, A., Insights from von Neumann analysis of high-order flux reconstruction schemes, J. Comput. Phys., 230, 22, 8134-8154 (2011) · Zbl 1343.65117 · doi:10.1016/j.jcp.2011.07.013
[59] Vincent, PE; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47, 1, 50-72 (2010) · Zbl 1433.76094 · doi:10.1007/s10915-010-9420-z
[60] Wang, Z.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H.; Kroll, N.; May, G.; Persson, P-O; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007 · doi:10.1002/fld.3767
[61] Wang, Z.; Gao, H., A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228, 21, 8161-8186 (2009) · Zbl 1173.65343 · doi:10.1016/j.jcp.2009.07.036
[62] Wang, Z.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids, J. Comput. Phys., 179, 2, 665-697 (2002) · Zbl 1006.65113 · doi:10.1006/jcph.2002.7082
[63] Williams, D., Castonguay, P., Vincent, P., Jameson, A.: An extension of energy stable flux reconstruction to unsteady, non-linear, viscous problems on mixed grids. In: 20th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2011). doi:10.2514/6.2011-3405
[64] Williams, D.; Castonguay, P.; Vincent, P.; Jameson, A., Energy stable flux reconstruction schemes for advection-diffusion problems on triangles, J. Comput. Phys., 250, 53-76 (2013) · Zbl 1349.65528 · doi:10.1016/j.jcp.2013.05.007
[65] Williams, D.; Shunn, L.; Jameson, A., Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements, J. Comput. Appl. Math., 266, 18-38 (2014) · Zbl 1293.65039 · doi:10.1016/j.cam.2014.01.007
[66] Williams, DM; Jameson, A., Energy stable flux reconstruction schemes for advection-diffusion problems on tetrahedra, J. Sci. Comput., 59, 3, 721-759 (2013) · Zbl 1303.65076 · doi:10.1007/s10915-013-9780-2
[67] Witherden, F.; Farrington, A.; Vincent, P., PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach, Comput. Phys. Commun., 185, 11, 3028-3040 (2014) · Zbl 1348.65005 · doi:10.1016/j.cpc.2014.07.011
[68] Witherden, F.; Vermeire, B.; Vincent, P., Heterogeneous computing on mixed unstructured grids with PyFR, Comput. Fluids, 120, 173-186 (2015) · Zbl 1390.76014 · doi:10.1016/j.compfluid.2015.07.016
[69] Zwanenburg, P.; Nadarajah, S., Equivalence between the energy stable flux reconstruction and filtered discontinuous Galerkin schemes, J. Comput. Phys., 306, 343-369 (2016) · Zbl 1351.76090 · doi:10.1016/j.jcp.2015.11.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.