×

Design of a Smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods. (English) Zbl 1519.76095

Summary: We present a new closure model for Large Eddy Simulation to introduce dissipation in under-resolved turbulent simulation using discontinuous Galerkin (DG) schemes applied to the compressible Navier-Stokes equations. The development of the method is based on a thorough analysis of the numerical dissipation mechanisms in DG schemes. In particular, we use upwind Riemann solvers for inter-element dissipation, and a Spectral Vanishing Viscosity (SVV) method for interior dissipation. First, these mechanisms are analysed using a linear von Neumann analysis (for a linear advection-diffusion equation) to characterise their properties in wave-number space. Second, their behaviour is tested using the three-dimensional Taylor-Green Vortex Navier-Stokes problem to assess transitional/turbulent flows. The results of the study are subsequently used to propose a DG-SVV approach that uses a mode-selection Smagorinsky LES model to compute the turbulent viscosity. When the SVV technique is combined with a low dissipation Riemann solver, the scheme is capable of maintaining low dissipation levels for laminar flows, while providing the correct dissipation for all wave-number ranges in turbulent regimes. The developed approach is designed for polynomial orders \(N \geq 2\) and is specially well suited for high order schemes. This new DG-SVV approach is calibrated with the Taylor-Green test case; to then show its accuracy in an under-resolved (\(y^+ > 8\)) channel flow at Reynolds number \(\mathrm{Re}_\tau = 183\).

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics

References:

[1] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comput Phys, 131, 2, 267-279 (1997) · Zbl 0871.76040
[2] Ferrer, E., An interior penalty stabilised incompressible discontinuous Galerkin - fourier solver for implicit large eddy simulations, J Comput Phys, 348, 754-775 (2017) · Zbl 1380.76018
[3] Kompenhans, M.; Rubio, G.; Ferrer, E.; Valero, E., Adaptation strategies for high order discontinuous Galerkin methods based on tau-estimation, J Comput Phys, 306, 216-236 (2016) · Zbl 1352.65353
[4] 13th {USNCCM} International Symposium of High-Order Methods for Computational Fluid Dynamics - A special issue dedicated to the 60th birthday of Professor David Kopriva · Zbl 1390.76329
[5] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput Fluids, 46, 1, 224-230 (2011) · Zbl 1431.76011
[6] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J Comput Phys, 231, 21, 7037-7056 (2012) · Zbl 1284.35311
[7] Ferrer, E.; Moxey, D.; Willden, R. H.J.; Sherwin, S., Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: continuous and discontinuous Galerkin formulations, Commun Comput Phys, 16, 3, 817-840 (2014)
[8] Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E., Upwind methods for the Baer-Nunziato equations and higher-order reconstruction using artificial viscosity, J Comput Phys, 326, 805-827 (2016) · Zbl 1373.76320
[9] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system (2019), 191011252
[10] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications (2008), Springer Science & Business Media · Zbl 1134.65068
[11] Kirby, R. M.; Karniadakis, G. E., De-aliasing on non-uniform grids: Algorithms and applications, J Comput Phys, 191, 1, 249-264 (2003) · Zbl 1161.76534
[12] Gassner GJ, Beck AD. On the accuracy of high-order discretizations for underresolved turbulence simulations, a.d. theoretical and computational fluid dynamics. (2013) 27-221.
[13] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J., On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of euler turbulence, J Comput Phys, 330, 615-623 (2017) · Zbl 1378.76036
[14] Lenormand, E.; Sagaut, P.; Phuoc, L. T.; Comte, P., Subgrid-scale models for large-eddy simulations of compressible wall bounded flows, AIAA J, 38, 8, 1340-1350 (2000)
[15] Hughes, T. J.R.; Oberai, A. A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys Fluids, 13, 6, 1784-1799 (2001) · Zbl 1184.76237
[16] Kirby, R. M.; Sherwin, S. J., Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling, Comput Method Appl Mech Eng, 195, 23-24, 3128-3144 (2006) · Zbl 1115.76060
[17] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J Numer Anal, 26, 1, 30-44 (1989) · Zbl 0667.65079
[18] Karamanos, G. S.; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J Comput Phys, 163, 1, 22-50 (2000) · Zbl 0984.76036
[19] de Wiart CC, Hillewaert K, Duponcheel M, Winckelmans G. Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high reynolds number. Int J Numer Method Fluids; 74(7):469-493. · Zbl 1455.65163
[20] Flad, D.; Gassner, G., On the use of kinetic energy preserving DG-schemes for large eddy simulation, J Comput Phys, 350, Supplement C, 782-795 (2017) · Zbl 1380.76019
[21] Fehn, N.; Wall, W. A.; Kronbichler, M., On the stability of projection methods for the incompressible navier-stokes equations based on high-order discontinuous galerkin discretizations, J Comput Phys, 351, 392-421 (2017) · Zbl 1380.65204
[22] de la Llave Plata, M.; Couaillier, V.; Pape, M. C.l., On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence, Comput Fluids (2017)
[23] Alhawwary, M.; Wang, Z., Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws, J Comput Phys, 373, 835-862 (2018) · Zbl 1416.65252
[24] Moura RC, Fernandez P, Mengaldo G, Sherwin SJ. Temporal eigenanalysis of HDG methods for linear advection-diffusion. 2018.
[25] Gassner, G. J.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of gauss and gauss-lobatto discontinuous Galerkin spectral element methods, SIAM J Sci Comput, 33, 5, 2560-2579 (2011) · Zbl 1255.65089
[26] Moura, R. C.; Sherwin, S. J.; Peiro, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous galerkin spectral/hp methods, J Comput Phys, 298, 695-710 (2015) · Zbl 1349.76131
[27] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E., Dispersion-dissipation analysis for advection problems with nonconstant coefficients: Applications to discontinuous Galerkin formulations, SIAM J Sci Comput, 40, 2, A747-A768 (2018) · Zbl 1453.65337
[28] Fernandez, P.; Moura, R. C.; Mengaldo, G.; Peraire, J., Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations, Comput Method Appl Mech Eng, 346, 43-62 (2019) · Zbl 1440.76057
[29] Kopriva, D. A.; Gassner, G. J., An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM J Sci Comput, 36, 4, A2076-A2099 (2014) · Zbl 1303.65086
[30] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E.; Kopriva, D. A., Insights on aliasing driven instabilities for advection equations with application to Gauss-Lobatto discontinuous Galerkin methods, J Sci Comput (2017)
[31] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible euler equations, Journal of Computational Physics, 327, 39-66 (2016) · Zbl 1422.65280
[32] Gassner, G. J.; Winters, A. R.; Hindenlang, F. J.; Kopriva, D. A., The BR1 scheme is stable for the compressible Navier-Stokes equations, Journal of Scientific Computing, 77, 1, 154-200 (2018) · Zbl 1407.65189
[33] Winters, A. R.; Moura, R. C.; Mengaldo, G.; Gassner, G. J.; Walch, S.; Peiro, J., A comparative study on polynomial dealiasing and split form discontinuous galerkin schemes for under-resolved turbulence computations, J Comput Phys, 372, 1-21 (2018) · Zbl 1415.76461
[34] Kirby, R. M.; Karniadakis, G. E., Coarse resolution turbulence simulations with spectral vanishing viscosity-large-eddy simulations (SVV-LES), J Fluids Eng, 124, 4, 886-891 (2002)
[35] Kopriva, D. A., Implementing spectral methods for partial differential equations (2009), Springer Netherlands · Zbl 1172.65001
[36] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39 (5), 1749-1779 (2001) · Zbl 1008.65080
[37] Moura, R. C.; Sherwin, S. J.; Peiró, J., Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: Insights into spectral vanishing viscosity, J Comput Phys, 307, 401-422 (2016) · Zbl 1352.65362
[38] Manzanero, J.; Rueda-Ramírez, A. M.; Rubio, G.; Ferrer, E., The bassi rebay 1 scheme is a special case of the symmetric interior penalty formulation for discontinuous Galerkin discretisations with gauss-lobatto points, J Comput Phys, 363, 1-10 (2018) · Zbl 1398.65307
[39] Owald, K.; Siegmund, A.; Birken, P.; Hannemann, V.; Meister, A., L^2Roe: a low dissipation version of Roe’s approximate Riemann solver for low Mach numbers, Int J Numer Methods Fluids, 81, 2, 71-86 (2016)
[40] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains, J Comput Phys, 252, 518-557 (2013) · Zbl 1349.65293
[41] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J Sci Comp, 35, 3, 1233-1256 (2013) · Zbl 1275.65065
[42] Toro, E., Riemann solvers and numerical methods for fluid dynamics (2009), Springer · Zbl 1227.76006
[43] Guo, B.; Ma, H.; Tadmor, E., Spectral vanishing viscosity method for nonlinear conservation laws, SIAM J Numer Anal, 39, 4, 1254-1268 (2001) · Zbl 1020.65071
[44] Smagorinsky, J., General circulation experiments with the primitive equations, Month Weather Rev, 91, 3, 99-164 (1963)
[45] Pope, S. B., Turbulent flows (2000), Cambridge University Press · Zbl 0966.76002
[46] Fernández, P.; Nguyen, N. C.; Peraire, J., Subgrid-scale modeling and implicit numerical dissipation in DG-based large-eddy simulation, 23rd AIAA Computational Fluid Dynamics Conference (2017)
[47] Lilly, D. K., A proposed modification of the germano subgridâscale closure method, Phys Fluids A, 4, 3, 633-635 (1992)
[48] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J Fluid Mech, 177, 133â166 (1987) · Zbl 0616.76071
[49] Mengaldo, G.; Grazia, D. D.; Moura, R.; Sherwin, S., Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness, J Comput Phys, 358, 1-20 (2018) · Zbl 1381.76129
[50] Mengaldo, G.; Moura, R.; Giralda, B.; Peir, J.; Sherwin, S., Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES, Comput Fluids, 169, 349-364 (2018) · Zbl 1410.76103
[51] Bassy, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2d euler equations, J Comput Phys, 138, 251-285 (1997) · Zbl 0902.76056
[52] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proceedings of the royal society A: mathematical, Physical and engineering sciences, 158, 499-521 (1937) · JFM 63.1358.03
[53] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J., An LES setting for DG-based implicit LES with insights on dissipation and robustness, 161-173 (2017), Springer International Publishing: Springer International Publishing Cham · Zbl 1388.76101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.