×

Discontinuous Galerkin via interpolation: the direct flux reconstruction method. (English) Zbl 1445.76062

Summary: The discontinuous Galerkin (DG) method is based on the idea of projection using integration. The recent direct flux reconstruction (DFR) method by J. Romero et al. [J. Sci. Comput. 67, No. 1, 351–374 (2016; Zbl 1339.65180)] is derived via interpolation and results in a scheme identical to DG (on hexahedral meshes). The DFR method is further studied and developed here. Two proofs for its equivalence with the DG scheme considerably simpler than the original proof are presented. The first proof employs the \(2K - 1\) degree of precision by a \(K \)-point Gauss quadrature. The second shows the equivalence of DG, FR, and DFR by using the property that the derivative of the degree \(K + 1\) Lobatto polynomial vanishes at the \(K\) Gauss points. Fourier analysis for these schemes are presented using an approach more geometric compared with existing analytic approaches. The effects of nonuniform mesh and those of high-order mesh transformation (a precursor for curved meshes in two and three spatial dimensions) on stability and accuracy are examined. These nonstandard analyses are obtained via an in-depth study of the behavior of eigenvalues and eigenvectors.

MSC:

76M99 Basic methods in fluid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1339.65180
Full Text: DOI

References:

[1] Abe, Y.; Haga, T.; Nonomura, T.; Fujii, K., On the freestream preservation of high-order conservative flux-reconstruction schemes, J. Comput. Phys., 281, 28-54 (2015) · Zbl 1352.65415 · doi:10.1016/j.jcp.2014.10.011
[2] Adjerid, S.; Devine, KD; Flaherty, JE; Krivodonova, L., A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Comput. Methods Appl. Mech. Eng., 191, 1097-1112 (2002) · Zbl 0998.65098 · doi:10.1016/S0045-7825(01)00318-8
[3] Ainsworth, M., Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Comput. Phys., 198, 1, 106-130 (2004) · Zbl 1058.65103 · doi:10.1016/j.jcp.2004.01.004
[4] Alhawwary, M.; Wang, ZJ, Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws, J. Comput. Phys., 373, 835-862 (2015) · Zbl 1416.65252 · doi:10.1016/j.jcp.2018.07.018
[5] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 1997, 267-279 (1997) · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[6] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution for the 2D Euler equations, J. Comput. Phys., 138, 251-285 (1997) · Zbl 0902.76056 · doi:10.1006/jcph.1997.5454
[7] Bassi, F.; Rebay, S.; Cockburn, B.; Karniadakis, G.; Shu, C-W, A high order discontinuous Galerkin method for compressible turbulent flows, Discontinuous Galerkin Methods: Theory, Computation, and Application. Lecture Notes in Computational Science and Engineering, 77-88 (2000), Berlin: Springer, Berlin · Zbl 0991.76039
[8] Black, K., A conservative spectral element method for the approximation of compressible fluid flow, Kybernetika, 35, 1, 133-146 (1999) · Zbl 1274.76271
[9] Black, K., Spectral element approximation of convection-diffusion type problems, Appl. Numer. Math., 33, 1-4, 373-379 (2000) · Zbl 0964.65104 · doi:10.1016/S0168-9274(99)00104-X
[10] Cockburn, B.; Karniadakis, G.; Shu, C-W, Discontinuous Galerkin Methods: Theory, Computation, and Application (2000), Berlin: Springer, Berlin
[11] Cockburn, B.; Shu, C-W, The local discontinuous Galerkin methods for time-dependent convection diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[12] Cockburn, B.; Shu, C-W, Foreword for the special issue on discontinuous Galerkin method, J. Sci. Comput., 22-23, 1-3 (2005)
[13] Cockburn, B.; Shu, C-W, Foreword for the special issue on discontinuous Galerkin method, J. Sci. Comput., 40, 1-3 (2009) · Zbl 1203.65005 · doi:10.1007/s10915-009-9298-9
[14] Gassner, G.; Kopriva, DA, A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods, SIAM J. Sci. Comput., 33, 5, 2560-2579 (2011) · Zbl 1255.65089 · doi:10.1137/100807211
[15] Hesthaven, JS; Warburton, T., Nodal Discontinuous Galerkin Methods (2008), Berlin: Springer, Berlin · Zbl 1134.65068
[16] Hildebrand, FB, Introduction to Numerical Analysis (1987), New York: Dover Books on Advanced Mathematics, New York · Zbl 0641.65001
[17] Hu, FQ; Hussaini, MY; Rasetarinera, P., An analysis of the discontinuous Galerkin method for wave propagation problems, J. Comput. Phys., 151, 921-946 (1999) · Zbl 0933.65113 · doi:10.1006/jcph.1999.6227
[18] Hu, F.; Atkins, H., Eigensolution analysis of the discontinuous Galerkin method with nonuniform grids: I. One space dimension, J. Comput. Phys., 182, 2, 516-545 (2002) · Zbl 1015.65048 · doi:10.1006/jcph.2002.7184
[19] Huynh, H.T.: A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods. AIAA Paper 2007-4079 (2007)
[20] Huynh, H.T.: A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion. AIAA Paper 2009-403 (2009)
[21] Huynh, HT; Wang, ZJ; Vincent, PE, High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, Comput. Fluids, 98, 209-220 (2014) · Zbl 1390.65123 · doi:10.1016/j.compfluid.2013.12.007
[22] Johnson, P.E., Johnsen, E., Huynh, H.T.: A novel flux reconstruction method for diffusion problems. In: AIAA Paper, AIAA Aviation Conference (2019, to appear)
[23] Kopriva, DA, Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 301-326 (2006) · Zbl 1178.76269 · doi:10.1007/s10915-005-9070-8
[24] Kopriva, DA; Woodruff, SL; Hussaini, MY; Cockburn, B.; Karniadakis, G.; Shu, C-W, Discontinuous spectral element approximation of Maxwell’s equations, Proceedings of the International Symposium on Discontinuous Galerkin Methods (2000), New York: Springer, New York
[25] Kopriva, DA; Woodruff, SL; Hussaini, MY, Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int. J. Numer. Meth. Eng., 53, 105-122 (2002) · Zbl 0994.78020 · doi:10.1002/nme.394
[26] LaSaint, P.; Raviart, PA; de Boor, C., On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, 89-145 (1974), Cambridge: Academic Press, Cambridge · Zbl 0341.65076
[27] Mengaldo, G.; De Grazia, D.; Moura, RC; Sherwin, SJ, Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness, J. Comput. Phys., 358, 1-20 (2018) · Zbl 1381.76129 · doi:10.1016/j.jcp.2017.12.019
[28] Moura, RC; Sherwin, SJ; Peiró, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J. Comput. Phys., 298, 695-710 (2015) · Zbl 1349.76131 · doi:10.1016/j.jcp.2015.06.020
[29] Reed, W.H., Hill, T.R.: Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory Report, LA-UR-73-479 (1973)
[30] Romero, J.; Asthana, K.; Jameson, A., A simplified formulation of the flux reconstruction method, J. Sci. Comput., 67, 1, 351-374 (2016) · Zbl 1339.65180 · doi:10.1007/s10915-015-0085-5
[31] Romero, J.; Witherden, FD; Jameson, A., A direct flux reconstruction scheme for advection-diffusion problems on triangular grids, J. Sci. Comput., 73, 2-3, 1115-1144 (2017) · Zbl 1381.65084 · doi:10.1007/s10915-017-0472-1
[32] Shu, C.-W.: Discontinuous Galerkin method for time dependent problems: survey and recent developments. In: Feng, X., et al. (eds.) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, The IMA Volumes in Mathematics and its Applications 157. Springer, Berlin (2012) · Zbl 1282.65122
[33] Van den Abeele, K.: Development of High-Order Accurate Schemes for Unstructured Grids. Ph.D. thesis, Vrije Universiteit Brussel (2009)
[34] Vincent, PE; Castonguay, P.; Jameson, A., Insights from von Neumann analysis of high-order flux reconstruction schemes, J. Comput. Phys., 230, 22, 8134-8154 (2011) · Zbl 1343.65117 · doi:10.1016/j.jcp.2011.07.013
[35] Wang, ZJ, High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007 · doi:10.1002/fld.3767
[36] Wang, ZJ; Huynh, HT, A review of flux reconstruction or correction procedure via reconstruction method for the Navier-Stokes equations, Mech. Eng. Rev., 3, 1, 1-16 (2016) · doi:10.1299/mer.15-00475
[37] Wang, L.; Yu, M., Compact direct flux reconstruction for conservation laws, J. Sci. Comput., 75, 253-275 (2018) · Zbl 1398.65221 · doi:10.1007/s10915-017-0535-3
[38] Witherden, FD; Vincent, PE; Jameson, A.; Abgrall, R.; Shu, C-W, High-order flux reconstruction schemes, Handbook of Numerical Analysis, Chapter 10, 227-263 (2016), Amsterdam: Elsevier, Amsterdam
[39] Yang, H.; Li, F.; Qiu, J., Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods, J. Sci. Comput., 55, 3, 552-574 (2013) · Zbl 1280.65099 · doi:10.1007/s10915-012-9647-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.