×

Global bifurcation and stability of steady states for a bacterial colony model with density-suppressed motility. (English) Zbl 1481.92089

Summary: We investigate the structure and stability of the steady states for a bacterial colony model with density-suppressed motility. We treat the growth rate of bacteria as a bifurcation parameter to explore the local and global structure of the steady states. Relying on asymptotic analysis and the theory of Fredholm solvability, we derive the second-order approximate expression of the steady states. We analytically establish the stability criterion of the bifurcation solutions, and show that sufficiently large growth rate of bacteria leads to a stable uniform steady state. While the growth rate of bacteria is less than some certain value, there is pattern formation with the admissible wave mode. All the analytical results are corroborated by numerical simulations from different stages.

MSC:

92C99 Physiological, cellular and medical topics
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35K59 Quasilinear parabolic equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Fu, X.; Tang, L. H.; Liu, C.; Huang, J. D.; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density -suppressed motility, Phys. Rev. Lett., 108, 19, 198102 (2012)
[2] Jin, H. Y.; Kim, Y. J.; Wang, Z. A., Boundedness, stabilization, and pattern formation driven by density- suppressed motility, SIAM J. Appl. Math., 78, 3, 1632-1657 (2018) · Zbl 1393.35100
[3] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 2, 225-234 (1971) · Zbl 1170.92307
[4] Yoon, C.; Kim, Y. J., Bacterial chemotaxis without gradient sensing, J. Math. Biol., 70, 1359-1380 (2015) · Zbl 1339.92012
[5] Tao, Y.; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Meth. Appl. Sci, 27, 19, 1645-1683 (2017) · Zbl 1516.35092
[6] Yoon, C.; Kim, Y. J., Global existence and aggregation in a Keller-Segel model with fokker-planck diffusion, Acta Appl. Math., 149, 101-123 (2017) · Zbl 1398.35110
[7] Xia, P.; Han, Y.; Tao, J.; Ma, M., Existence and metastability of non-constant steady states in a Keller-Segel model with density-suppressed motility, Math. Appl. Sci. Eng., 1, 1-15 (2020) · Zbl 1498.92037
[8] Roberge, J. S.; Iron, D.; Kolokolnikov, T., Pattern formation in bacterial colonies with density-dependent diffusion, Europ. J. Appl. Math., 30, 196-218 (2019) · Zbl 1407.92030
[9] 132259:1-13 · Zbl 1453.37086
[10] Crandall, M.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[11] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 487-513 (1971) · Zbl 0212.16504
[12] Jang, J.; Ni, W.-M.; Tang, M., Global bifurcation and structure of turing patterns in the 1-d Lengyel-epstein model, J. Dyn. Differ. Equ., 16, 2, 297-320 (2004) · Zbl 1072.35091
[13] Takagi, I., Point-condensation for a reaction-diffusion system, J. Diff. Eqn., 61, 208-249 (1986) · Zbl 0627.35049
[14] Y., N., Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13, 555-593 (1982) · Zbl 0501.35010
[15] Kantorovich, L.; Akilov, G., Functional Analysis in Normed Spaces (1964), Macmillan: Macmillan New York · Zbl 0127.06104
[16] Gambino, G.; Lombardo, M. C.; Sammartino, M., Pattern formation driven by cross-diffusion in 2d domain, Nonlinear Anal. RWA, 14, 1755-1779 (2013) · Zbl 1270.35088
[17] Ma, M.; Gao, M. Y.; Tong, C. Q.; Han, Y. Z., Chemotaxis-driven pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect, Comput. Math. Appl., 72, 1320-1340 (2016) · Zbl 1366.92030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.