×

Chemotaxis-driven pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect. (English) Zbl 1366.92030

Summary: In this paper we analytically and numerically investigate the emerging process of pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect. We first apply globally asymptotic stability analysis to show that the chemotactic flux is the key mechanism for pattern formation. Then, by weakly nonlinear analysis with multiple scales and the adjoint system theory, we derive the cubic and the quintic Stuart-Landau equations to describe the evolution of the amplitude of the most unstable mode, and thus the analytical approximate solutions of the patterns are obtained. Next, we present the selection law of principal wave mode of the emerging pattern by considering the competition of the growing modes, and for this we deduce the change rule of the most unstable mode and the coupled ordinary differential equations that indicates the significant nonlinear interaction of two competing modes. Finally, in the subcritical case we clarify that there exists the phenomenon of hysteresis, which implies the existence of large amplitude pattern for the bifurcation parameter values smaller than the first bifurcation point. Therefore, we answer the open problems proposed in the known references and improve some of results obtained there. All the theoretical results are tested against the numerical results showing excellent qualitative and good quantitative agreement.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Adler, J., Chemotaxis in bacteria, Science, 153, 708-716 (1966)
[2] Adler, J., Chemoreceptors in bacteria, Science, 166, 1588-1597 (1969)
[3] Brenner, M. P.; Levitor, L. S.; Budrene, E. O., Physical mechanisms for chemotactic pattern formation by bacterial, Biophys. J., 74, 1677-1693 (1988)
[4] Budrene, E.; Berg, H., Complex patterns formed by motile cells of Escherichia coli, Nature, 349, 630-633 (1991)
[5] Budrene, E.; Berg, H., Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376, 49-53 (1995)
[6] Goldstein, R. E., Traveling-wave chemotaxis, Phys. Rev. Lett., 77, 775-778 (1996)
[7] Lee, K. J.; Cox, E. C.; Goldstein, R. E., Competing patterns of signaling activity in dictyostelium discoideum, Phys. Rev. Lett., 76, 1174-1177 (1996)
[8] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-338 (1953) · Zbl 1296.82044
[9] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theoret. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[10] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewd as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[11] Painter, K.; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10, 4, 501-543 (2002) · Zbl 1057.92013
[12] Wang, Z. A.; Hillen, T., Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17, 037108 (2007) · Zbl 1163.37383
[13] Wang, Z. A., On chemotaxis models with cell population interactions, Math. Model. Nat. Phenom., 5, 173-190 (2010) · Zbl 1197.35140
[14] Ma, M. J.; Wang, Z. A., Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28, 2639-2660 (2015) · Zbl 1331.35185
[15] Ma, M. J.; Wang, Z. A., Patterns in a generalized volume-filling chemotaxis model with cell proliferation, Anal. Appl., 1-24 (2015)
[16] Potapov, A.; Hillen, T., Metastability in chemotaxis models, J. Dynam. Differential Equations, 17, 293-330 (2005) · Zbl 1170.35460
[17] Wang, X. F.; Xu, Q., Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness, J. Math. Biol., 66, 1241-1266 (2013) · Zbl 1301.92006
[18] Jin, H. Y.; Wang, Z. A., Global dynamics of the attraction-repulsion keller-segel model in one dimension, Math. Methods Appl. Sci., 38, 444-457 (2015) · Zbl 1310.35005
[19] Ma, M. J.; Hu, J. J., Non-existence of stationary pattern of a chemotaxis model with logistic growth, Nonlinear Anal. TMA, 105, 3-9 (2014) · Zbl 1288.35065
[20] Ma, M. J.; Ou, C. H.; Wang, Z. A., Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72, 740-766 (2012) · Zbl 1259.35031
[21] Gambino, G.; Lombardo, M. C.; Sammartino, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comput. Simulation, 82, 1112-1132 (2012) · Zbl 1320.35170
[22] Gambino, G.; Lombardo, M. C.; Sammartino, M.; Sciacca, V., Turing pattern formation in the brusselator system with nonlinear diffusion, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 88, 042925 (2013)
[23] Ibrahim, M.; Saad, M., On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model, Comput. Math. Appl., 68, 1032-1051 (2014) · Zbl 1362.65092
[24] Segel, L., Modeling Dynamic Phenomena in Molecular and Cellular Biology (1987), Cambrigde University Press: Cambrigde University Press New York · Zbl 0639.92002
[25] Han, Y. Z.; Li, Z. F.; Zhang, S. T.; Ma, M. J., Wavefront invasion for a volume-filling chemotaxis model with logistic growth, Comput. Math. Appl., 71, 471-478 (2016) · Zbl 1443.92059
[26] Gambino, G.; Lombardo, M. C.; Sammartino, M., Pattern formation driven by cross-diffusion in 2d domain, Nonlinear Anal. RWA, 14, 1755-1779 (2013) · Zbl 1270.35088
[27] Bozzini, B.; Gambino, G.; Lacitignola, D.; Lupo, S.; Sammartino, M.; Sgura, I., Weakly nonlinear analysis of turing patterns in a morphochemical model for metal growth, Comput. Math. Appl., 70, 1948-1969 (2015) · Zbl 1443.82017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.