×

Bacterial chemotaxis without gradient-sensing. (English) Zbl 1339.92012

Chemotaxis models like the Keller-Segel system are based on spatial or temporal gradient measurements by individual organisms. The authors propose an explanation of the chemotactic behavior when individuals do not sense the gradient of chemical concentration. The model (in one space dimension) is based on the observation: if individuals increase their dispersal rate to find food when there is not enough food, an accurate chemotactic behavior may be obtained without sensing the gradient. Such a dispersal (suggested by E. Cho and the second author [Bull. Math. Biol. 75, No. 5, 845–870 (2013; Zbl 1311.92155)]) is called starvation driven diffusion. This model is similar to the original Keller-Segel model. Traveling waves are studied for that model.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35C07 Traveling wave solutions
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K59 Quasilinear parabolic equations
35A24 Methods of ordinary differential equations applied to PDEs

Citations:

Zbl 1311.92155

References:

[1] Adler J (1966) Chemotaxis in bacteria. Science 153:708-716 · doi:10.1126/science.153.3737.708
[2] Adler J (1969) Chemoreceptors in bacteria. Science 166:1588 · doi:10.1126/science.166.3913.1588
[3] Bonner JT (1967) The cellular slime molds, 2nd edn. Princeton University Press, Princeton
[4] Chaplain MAJ (1996) Avascular growth, angiogenesis and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development. Math Comput Model 23:47-87 · Zbl 0859.92012 · doi:10.1016/0895-7177(96)00019-2
[5] Cho E, Kim Y-J (2013) Starvation driven diffusion as a survival strategy of biological organisms. Bull Math Biol 75(5):845-870 (MR 3050058) · Zbl 1311.92155
[6] Condeelis J, Singer RH, Segall JE (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695-718 · doi:10.1146/annurev.cellbio.21.122303.120306
[7] Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263-266
[8] Corrias L, Perthame B, Zaag H (2003) A chemotaxis model motivated by angiogenesis. C R Math Acad Sci Paris 336(2):141-146 [MR 1969568 (2004c:92004)] · Zbl 1028.35062
[9] Corrias L, Perthame B, Zaag H (2004) Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J Math 72:1-28 [MR 2099126 (2005f:35135)] · Zbl 1115.35136
[10] Dormann D, Weijer CJ (2006) Chemotactic cell movement during dictyostelium development and gastrulation. Curr Opin Genet Dev 16(4):367-373 · doi:10.1016/j.gde.2006.06.003
[11] Ebihara Yukiyoshi, Furusho Yasuhiro, Nagai Toshitaka Singular (1992) solutions of traveling waves in a chemotactic model. Bull Kyushu Inst Tech Math Nat Sci 39:29-38 [MR 1167896 (93f:92012)] · Zbl 0762.92019
[12] Hildebrand E, Kaupp UB (2005) Sperm chemotaxis: a primer. Ann N Y Acad Sci 1061:221-225
[13] Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58:1-2, 183-217 [MR 2448428 (2009m:92017)] · Zbl 1161.92003
[14] Jin H-Y, Li J, Wang Z-A (2013) Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. J Differ Equ 255(2):193-219 (MR 3047400) · Zbl 1293.35071
[15] Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30(2):225-234 · Zbl 1170.92307
[16] Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30(2):235-248 · Zbl 1170.92308
[17] Keller Evelyn F, Odell Garrett M (1975) Necessary and sufficient conditions for chemotactic bands. Math Biosci 27(3/4):309-317 [MR 0411681 (53 #15411)] · Zbl 0346.92009
[18] Lapidus JR, Schiller R (1978) A model for traveling bands of chemotactic bacteria. J Theor Biol 22:1-13
[19] Larrivee B, Karsan A (2000) Signaling pathways induced by vascular endothelial growth factor (review). Int J Mol Med 5(5):447-456
[20] Levine Howard A, Sleeman Brian D, Nilsen-Hamilton M (2001) Mathematical modeling of the onset of capillary formation initiating angiogenesis. J Math Biol 42(3):195-238 [MR 1828815 (2003b:92003)] · Zbl 0977.92013
[21] Li T, Wang Z-A (2009/10) Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM J Appl Math 70(5):1522-1541 [MR 2578681 (2011d:35308)] · Zbl 1206.35041
[22] Li T, Wang Z-A (2012) Steadily propagating waves of a chemotaxis model. Math Biosci 240(2):161-168 (MR 3000369) · Zbl 1316.92013 · doi:10.1016/j.mbs.2012.07.003
[23] Lui R, Wang ZA (2010) Traveling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol 61(5):739-761 [MR 2684162 (2011m:92019)] · Zbl 1205.92007
[24] Matsushita M, Wakita J, Itoh H, Watanabe K, Arai T, Matsuyama T, Sakaguchi H, Mimura M (1999) Formation of colony patterns by a bacterial cell population. Phys A 274(1-2):190-199 · doi:10.1016/S0378-4371(99)00328-3
[25] Nagai T, Ikeda T (1991) Traveling waves in a chemotactic model. J Math Biol 30(2):169-184 [MR 1138847 (93b:92014)] · Zbl 0742.92001
[26] Okubo A, Levin Simon A (2001) Diffusion and ecological problems: modern perspectives, 2nd edn. In: Interdisciplinary applied mathematics, vol 14. Springer, New York [MR 1895041 (2003a:92025)] · Zbl 1027.92022
[27] Rosen G (1974) On the propagation theory for bands of chemotactic bacteria. Math Biosci 20:185-189 · Zbl 0281.92006 · doi:10.1016/0025-5564(74)90078-9
[28] Rosen G (1975) Analytically solution to the initial-value problem for traveling bands of chemotaxis bacteria. J Theor Biol 49:311-321 · doi:10.1016/S0022-5193(75)80036-1
[29] Rosen G (1975) On the stability of steadily propagating bands of chemotactic bacteria. Math Biosci 24:273-279 · Zbl 0307.92013 · doi:10.1016/0025-5564(75)90080-2
[30] Rosen G, Baloga S (1978) Steady-state distribution of bacteria chemotaxis toward oxygen. Bull Math Biol 40:671-674 · Zbl 0395.92008 · doi:10.1007/BF02460738
[31] Tindall MJ, Maini PK, Porter SL, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull Math Biol 70(6):1570-1607 [MR 2430318 (2009i:92012b)] · Zbl 1209.92006
[32] Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis. I. The single cell. Bull Math Biol 70(6):1525-1569 [MR 2430317 (2009i:92012a)] · Zbl 1166.92008
[33] Wang Z, Hillen T (2008) Shock formation in a chemotaxis model. Math Methods Appl Sci 31(1):45-70 [MR 2373922 (2009e:35177)] · Zbl 1147.35057
[34] Xue C, Ju HH, Painter KJ, Erban R (2011) Travelling waves in hyperbolic chemotaxis equations. Bull Math Biol 73(8):1695-1733 [MR 2817814 (2012g:92035)] · Zbl 1220.92010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.