×

Hexapodal gaits and coupled nonlinear oscillator models. (English) Zbl 0767.92015

Summary: The general, model-independent features of different networks of six symmetrically coupled nonlinear oscillators are investigated. These networks are considered as possible models for locomotor central pattern generators (CPGs) in insects. Numerical experiments with a specific oscillator network model are briefly described. It is shown that some generic phase-locked oscillation-patterns for various systems of six symmetrically coupled nonlinear oscillators correspond to the common forward-walking gaits adopted by insects. It is also demonstrated that transitions observed in insect gaits can be modelled as standard symmetry-breaking bifurcations occurring in such systems. The present analysis, which leads to a natural classification of hexapodal gaits by symmetry and to natural sequences of gait bifurcations, relates observed gaits to the overall organizational structure of the underlying CPG. The implications of the present results for the development of simplified control systems for hexapodal walking robots are discussed.

MSC:

92C99 Physiological, cellular and medical topics
92F05 Other natural sciences (mathematical treatment)
Full Text: DOI

References:

[1] Alexander R McN (1977) Terrestrial locomotion. In: Alexander R McN, Goldspink JM (eds) Mechanics and energetics of animal locomotion. Chapman and Hall, London, pp 168–203
[2] Ashwin P (1990) Symmetric chaos in systems of three and four forced oscillators. Nonlinearity 3:603–617 · Zbl 0711.94031 · doi:10.1088/0951-7715/3/3/004
[3] Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin Heidelberg New York
[4] Bässler U (1986) On the definition of central pattern generator and its sensory control. Biol Cybern 54:65–69 · doi:10.1007/BF00337116
[5] Bässler U (1987) Timing and shaping influences on the motor output for walking in stick insects. Biol Cybern 55:397–401 · doi:10.1007/BF00318374
[6] Bay JS, Hemami H (1987) Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans Biomed Eng 34:297–306 · doi:10.1109/TBME.1987.326091
[7] Burrows M (1980) The control of sets of motoneurons by local interneurones in the locust. J Physiol 298:213–233
[8] Chossat P, Golubitsky M (1988) Symmetry-increasing bifurcation of chaotic attractors. Physica D 32:423–436 · Zbl 0668.58038 · doi:10.1016/0167-2789(88)90066-8
[9] Collins JJ, Stewart IN (1992) Symmetry-breaking bifurcation: A possible mechanism for 2 frequency-locking in animal locomotion. J Math Biol (in press) · Zbl 0757.92011
[10] Collins JJ, Stewart IN (1993) Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlin Sci (in press) · Zbl 0808.92012
[11] Cohen AH, Holmes PJ, Rand RH (1982) The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J Math Biol 13:345–369 · Zbl 0476.92003 · doi:10.1007/BF00276069
[12] Cruse H (1979) A new model describing the coordination patterns of the legs of a walking stick insect. Biol Cybern 32:107–113 · doi:10.1007/BF00337442
[13] Cruse H (1980a) A quantitative model of walking incorporating central and peripheral influences. I. The control of the individual leg. Biol Cybern 37:131–136 · doi:10.1007/BF00355451
[14] Cruse H (1980b) A quantitative model of walking incorporating central and peripheral influences. II. The connections between the different legs. Biol Cybern 37:137–144 · doi:10.1007/BF00355452
[15] Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends NeuroSci 13:15–21 · doi:10.1016/0166-2236(90)90057-H
[16] Dean J (1991) A model of leg coordination in the stick insect, Carausius morosus. II. Description of the kinematic model and simulation of normal step patterns. Biol Cybern 64:403–411 · doi:10.1007/BF00224707
[17] Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498 · doi:10.1126/science.7423199
[18] Delcomyn F (1985) Factors regulating insect walking. Annu Rev Entomol 30: 239–256 · doi:10.1146/annurev.en.30.010185.001323
[19] Field MJ, Golubitsky M (1990) Symmetric chaos. Comput Phys (Sep/Oct):470–479
[20] Foth E, Graham D (1983) Influence of loading parallel to the body axis on the walking coordination of an insect: II. Contralateral changes. Biol Cybern 48:149–157 · doi:10.1007/BF00318082
[21] Gambaryan P (1974) How mammals run: anatomical adaptations. Wiley, New York
[22] Getting PA (1988) Comparative analysis of invertebrate central pattern generators. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 101–127
[23] Golubitsky M, Stewart IN (1985) Hopf bifurcation in the presence of symmetry. Arch Rational Mech Anal 87:107–165 · Zbl 0588.34030 · doi:10.1007/BF00280698
[24] Golubitsky M, Stewart IN (1986) Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In: Golubitsky M, Guckenheimer J (eds) Multiparameter bifurcation theory. Contemporary Mathematics, vol 56. Am Math Soc Providence, pp 131–173 · Zbl 0602.58038
[25] Golubitsky M, Stewart IN, Schaeffer DG (1988) Singularities and groups in bifurcation theory, vol II. Springer, Berlin Heidelberg New York · Zbl 0691.58003
[26] Graham D (1972) A behavioural analysis of the temporal organization of walking movements in the 1st intar and adult stick insect Carausius morosus. J Comp Physiol 81:23–52 · doi:10.1007/BF00693548
[27] Graham D (1977) Simulation of a model for the coordination of leg movement in free walking insects. Biol Cybern 26:187–198 · doi:10.1007/BF00366590
[28] Graham D (1978a) Unusual step patterns in the free walking grasshopper Neoconocephalus robustus. I. General features of the step patterns. J Exp Biol 73:147–157
[29] Graham D (1978b) Unusual step patterns in the free walking grasshopper Neoconocephalus robustus. II. A critical test of the leg interactions underlying different models of hexapod co-ordination. J Exp Biol 73:159–172
[30] Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140 · doi:10.1016/S0065-2806(08)60039-9
[31] Gray J (1968) Animal locomotion. Weidenfeld and Nicolson, London
[32] Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304 · doi:10.1104/pp.55.2.247
[33] Hoppensteadt FC (1986) An introduction to the mathematics of neurons. Cambridge University Press, Cambridge · Zbl 0587.92010
[34] Hoyle G (1976) Arthropod walking. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum Press, New York, pp 137–179
[35] Hughes GM (1952) The coordination of insect movements. I. The walking movements of insects. J Exp Biol 29:267–284
[36] Kennedy D, Evoy WH, Hanawalt JT (1966) Release of coordinated behavior in crayfish by single central neurons. Science 154:917–919 · doi:10.1126/science.154.3751.917
[37] King GP, Stewart IN (1991a) Symmetric chaos. In: Ames WF, Rogers CF (eds) Nonlinear equations in the applied sciences. Academic Press, Boston, pp 257–315
[38] King GP, Stewart IN (1991b) Phase space reconstruction for symmetric dynamical systems. Preprint 64/1991, Mathematics Institute, University of Warwick
[39] Kleinfeld D, Sompolinsky H (1988) Associative neural network model for the generation of temporal patterns: Theory and application to central pattern generators. Biophys J 54:1039–1051 · doi:10.1016/S0006-3495(88)83041-8
[40] Kopell N (1988) Toward a theory of modelling central pattern generators. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 369–413
[41] Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39 · doi:10.1017/S0140525X00059057
[42] Macmillan DL, Kien J (1983) Intra- and intersegmental pathways active during walking in the locust. Proc R Soc London Ser B 218:287–308 · doi:10.1098/rspb.1983.0040
[43] Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50:1645–1662 · Zbl 0712.92006 · doi:10.1137/0150098
[44] Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56:173–193
[45] Pearson KG, Franklin R (1984) Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain. Int J Robotics Res 3:101–112 · doi:10.1177/027836498400300209
[46] Pearson KG, Iles JF (1970) Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana. J Exp Biol 52:139–165
[47] Pearson KG, Iles JF (1973) Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J Exp Biol 58:725–744
[48] Pearson KG, Robertson RM (1981) Interneurons coactivating hindleg flexor and extensor motoneurons in the cockroach leg. J Comp Physiol 144:391–400 · doi:10.1007/BF00612571
[49] Raibert MH, Sutherland IE (1983) Machines that walk. Sci Am 248:44–53 · doi:10.1038/scientificamerican0183-44
[50] Rand R, Cohen AH, Holmes PJ (1988) Systems of coupled oscillators as models of central pattern generators. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 333–367
[51] Schöner G, Yiang WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142:359–391 · doi:10.1016/S0022-5193(05)80558-2
[52] Selverston AI (1980) Are central pattern generators understandable? Behav Brain Sci 3:535–571 · doi:10.1017/S0140525X00006580
[53] Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501
[54] Song S-M, Waldron KJ (1989) Machines that walk: the adaptive suspension vehicle. MIT Press, Cambridge
[55] Sutherland IE, Ullner MK (1984) Footprints in the asphalt. Int J Robot Res 3:29–36 · doi:10.1177/027836498400300203
[56] Wendler G (1968) Ein Analogmodell der Beinbewegungen eines laufenden Insekts. In: Marko H, Färber G (eds) Kybernetik 1968. Oldenbourg, München, pp 68–74
[57] Wendler G (1978) Erzeugung und Kontrolle koordinierter Bewegungen bei Tieren – Beispiele an Insekten. In: Hauske G, Butenandt E (eds) Kybernetik 1977. Oldenbourg, München, pp 11–34
[58] Williams TL, Sigvardt KA, Kopell N, Ermentrout GB, Remler MP (1990) Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. J Neurophysiol 64:862–871
[59] Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103–122 · doi:10.1146/annurev.en.11.010166.000535
[60] Wilson DM (1968) An approach to the problem of control of rhythmic behaviour. In: Wiersma CAG (ed) Invertebrate nervous systems. University of Chicago Press, Chicago, pp 219–229
[61] Yee HC, Sweby PK, Griffiths DF (1991) Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics. J Computat Phys 97:249–310 · Zbl 0760.65087 · doi:10.1016/0021-9991(91)90001-2
[62] Yuasa H, Ito M (1990) Coordination of many oscillators and generation of locomotory patterns. Biol Cybern 63:177–184 · Zbl 0706.92012 · doi:10.1007/BF00195856
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.