×

Application of physics-constrained data-driven reduced-order models to shape optimization. (English) Zbl 07460282

Summary: This study proposes a novel approach for building surrogate models, in the form of reduced-order models(ROMs), for partial differential equation constrained optimization. A physics-constrained data-driven framework is developed to transform large-scale nonlinear optimization problems into ROM-constrained optimization problems. Unlike conventional methods, which suffer from instability of the forward sensitivity function, the proposed approach maps optimization problems to system dynamics optimization problems in Hilbert space to improve stability, reduce memory requirements, and lower computational cost. The utility of this approach is demonstrated for aerodynamic optimization of an NACA 0012 airfoil at \(Re = 1000\). A drag reduction of 9.35% is obtained at an effective angle of attack of eight degrees, with negligible impact on lift. Similarly, a drag reduction of 20% is obtained for fully separated flow at an angle of attack of \(25^\circ\). Results from these two optimization problems also reveal relationships between optimization in physical space and optimization of dynamical behaviours in Hilbert space.

MSC:

76-XX Fluid mechanics

References:

[1] Amsallem, D. & Farhat, C.2008Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J.46 (7), 1803-1813.
[2] Apponsah, K.P. & Zingg, D.W.2020 Aerodynamic shape optimization for unsteady flows: some benchmark problems. In AIAA Scitech 2020 Forum, p. 0541.
[3] Arian, E., Fahl, M. & Sachs, E.W.2000 Trust-region proper orthogonal decomposition for flow control. Tech. Rep. Institute for computer application in science and engineering, Hampton, VA.
[4] Balay, S., et al.2020 PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.14. Argonne National Laboratory.
[5] Bergmann, M. & Cordier, L.2008Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys.227 (16), 7813-7840. · Zbl 1388.76073
[6] Bergmann, M., Cordier, L. & Brancher, J.-P.2005Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys. Fluids17 (9), 097101. · Zbl 1187.76044
[7] Blonigan, P.J., Gomez, S.A. & Wang, Q.2014 Least squares shadowing for sensitivity analysis of turbulent fluid flows. In 52nd Aerospace Sciences Meeting, p. 1426.
[8] Bright, I., Lin, G. & Kutz, J.N.2013Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids25 (12), 127102. · Zbl 1320.76003
[9] Brunton, S.L. & Kutz, J.N.2019Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press. · Zbl 1407.68002
[10] Brunton, S.L., Noack, B.R. & Koumoutsakos, P.2020Machine learning for fluid mechanics. Annu. Rev. Fluid Mech.52, 477-508. · Zbl 1439.76138
[11] Bui-Thanh, T., Willcox, K. & Ghattas, O.2008aModel reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput.30 (6), 3270-3288. · Zbl 1196.37127
[12] Bui-Thanh, T., Willcox, K. & Ghattas, O.2008bParametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA J.46 (10), 2520-2529.
[13] Carlberg, K., Barone, M. & Antil, H.2017Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction. J. Comput. Phys.330, 693-734. · Zbl 1378.65145
[14] Carlberg, K., Bou-Mosleh, C. & Farhat, C.2011Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Intl J. Numer. Meth. Engng86 (2), 155-181. · Zbl 1235.74351
[15] Carlberg, K. & Farhat, C.2011A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems. Intl J. Numer. Meth. Engng86 (3), 381-402. · Zbl 1235.74352
[16] Carlberg, K., Farhat, C., Cortial, J. & Amsallem, D.2013The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys.242, 623-647. · Zbl 1299.76180
[17] Dalcín, L., Paz, R. & Storti, M.2005MPI for Python. J. Parallel Distrib. Comput.65 (9), 1108-1115.
[18] Dalcin, L.D., Paz, R.R., Kler, P.A. & Cosimo, A.2011Parallel distributed computing using Python. Adv. Water Resour.34 (9), 1124-1139.
[19] Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G. & Succi, S.2018Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Comput. Fluids166, 200-208. · Zbl 1390.76708
[20] Epureanu, B.I.2003A parametric analysis of reduced order models of viscous flows in turbomachinery. J. Fluids Struct.17 (7), 971-982.
[21] Fahl, M.2000 Trust-region methods for flow control based on reduced order modelling. PhD thesis, Universität Trier. · Zbl 1151.93001
[22] Hay, A., Borggaard, J.T. & Pelletier, D.2009Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J. Fluid Mech.629, 41-72. · Zbl 1181.76045
[23] He, P., Mader, C.A., Martins, J.R.R.A. & Maki, K.J.2019Aerothermal optimization of a ribbed U-bend cooling channel using the adjoint method. Intl J. Heat Mass Transfer140, 152-172.
[24] He, P. & Martins, J.2021 A hybrid time-spectral approach for aerodynamic shape optimization with unsteady flow. In AIAA Scitech 2021 Forum, p. 0278.
[25] Hernandez, V., Roman, J.E. & Vidal, V.2005SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw.31 (3), 351-362. · Zbl 1136.65315
[26] Hinze, M. & Matthes, U.2011 Model order reduction for networks of ODE and PDE systems. In IFIP Conference on System Modeling and Optimization, pp. 92-101. Springer. · Zbl 1266.93017
[27] Huang, R.F. & Lin, C.L.1995Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA J.33 (8), 1398-1403.
[28] Huynh, H.T.2007 A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In 18th AIAA Computational Fluid Dynamics Conference, p. 4079.
[29] Karbasian, H.R. & Vermeire, B.C.2022Gradient-free aerodynamic shape optimization using large eddy simulation. Comput. Fluids232, 105185. · Zbl 1521.76221
[30] Kunisch, K. & Volkwein, S.2008Proper orthogonal decomposition for optimality systems. ESAIM42 (1), 1-23. · Zbl 1141.65050
[31] Kurtulus, D.F.2015On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at \(Re= 1000\). Intl J. Micro Air Veh.7 (3), 301-326.
[32] Lassila, T. & Rozza, G.2010Parametric free-form shape design with PDE models and reduced basis method. Comput. Meth. Appl. Mech. Engng199 (23-24), 1583-1592. · Zbl 1231.76245
[33] Ling, J. & Templeton, J.2015Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier-Stokes uncertainty. Phys. Fluids27 (8), 085103.
[34] Liu, Y., Li, K., Zhang, J., Wang, H. & Liu, L.2012Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation. Commun. Nonlinear Sci. Numer. Simul.17 (8), 3427-3434.
[35] Manzoni, A., Quarteroni, A. & Rozza, G.2012Shape optimization for viscous flows by reduced basis methods and free-form deformation. Intl J. Numer. Meth. Fluids70 (5), 646-670. · Zbl 1412.76031
[36] Meena, M., Taira, K. & Asai, K.2017Airfoil-wake modification with Gurney flap at low Reynolds number. AIAA J.56 (4), 1348-1359.
[37] Moarref, R., Jovanović, M.R., Tropp, J.A., Sharma, A.S. & Mckeon, B.J.2014A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids26 (5), 051701.
[38] Mohebujjaman, M., Rebholz, L.G. & Iliescu, T.2018Physically constrained data ‘driven correction for reduced’ order modeling of fluid flows. Intl J. Numer. Meth. Fluids89 (3), 103-122. · Zbl 1412.65158
[39] Murata, T., Fukami, K. & Fukagata, K.2020Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech.882. · Zbl 1430.76395
[40] Nadarajah, S. & Jameson, A.2000 A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In 38th Aerospace Sciences Meeting and Exhibit, p. 667.
[41] Nair, A.G., Yeh, C.-A., Kaiser, E., Noack, B.R., Brunton, S.L. & Taira, K.2019Cluster-based feedback control of turbulent post-stall separated flows. J. Fluid Mech.875, 345-375. · Zbl 1421.76138
[42] Newman, J.C. Iii, Taylor, A.C. Iii, Barnwell, R.W., Newman, P.A. & Hou, G.J.-W.1999Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. J. Aircraft36 (1), 87-96.
[43] Oliveira, I.B. & Patera, A.T.2007Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Engng8 (1), 43-65. · Zbl 1171.65404
[44] Orozco, C.E. & Ghattas, O.N.1992Massively parallel aerodynamic shape optimization. Comput. Syst. Engng3 (1-4), 311-320.
[45] Parish, E.J., Wentland, C.R. & Duraisamy, K.2020The adjoint Petrov-Galerkin method for non-linear model reduction. Comput. Meth. Appl. Mech. Engng365, 112991. · Zbl 1442.76069
[46] Ravindran, S.S.2000Reduced-order adaptive controllers for fluid flows using POD. J. Sci. Comput.15 (4), 457-478. · Zbl 1048.76016
[47] Rowley, C.W. & Dawson, S.T.M.2017Model reduction for flow analysis and control. Annu. Rev. Fluid Mech.49, 387-417. · Zbl 1359.76111
[48] Rozza, G. & Manzoni, A.2010 Model order reduction by geometrical parametrization for shape optimization in computational fluid dynamics. In Proceedings of the ECCOMAS CFD, V European Conference on Computational Fluid Dynamics, pp. 1-20.
[49] Rubino, A., Pini, M., Colonna, P., Albring, T., Nimmagadda, S., Economon, T. & Alonso, J.2018Adjoint-based fluid dynamic design optimization in quasi-periodic unsteady flow problems using a harmonic balance method. J. Comput. Phys.372, 220-235. · Zbl 1415.76537
[50] Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., Mckeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S.2017Modal analysis of fluid flows: an overview. AIAA J.55 (12), 4013-4041.
[51] Taira, K., Hemati, M.S., Brunton, S.L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S.T.M. & Yeh, C.-A.2020Modal analysis of fluid flows: applications and outlook. AIAA J.58 (3), 998-1022.
[52] Virtanen, P., et al.2020SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Meth.17, 261-272.
[53] Wang, Q., Hu, R. & Blonigan, P.2014Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. J. Comput. Phys.267, 210-224. · Zbl 1349.37082
[54] Yamaleev, N., Diskin, B. & Nielsen, E.2008 Adjoint-based methodology for time-dependent optimization. In 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 5857.
[55] Yarusevych, S., Sullivan, P.E. & Kawall, J.G.2009On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech.632, 245. · Zbl 1183.76057
[56] Yoon, G.H.2016Topology optimization for turbulent flow with Spalart-Allmaras model. Comput. Meth. Appl. Mech. Engng303, 288-311. · Zbl 1425.74382
[57] Zahr, M.J. & Farhat, C.2015Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Intl J. Numer. Meth. Engng102 (5), 1111-1135. · Zbl 1352.49029
[58] Zahr, M.J. & Persson, P.-O.2016An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems. J. Comput. Phys.326, 516-543. · Zbl 1373.35329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.