×

A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems. (English) Zbl 1235.74352

Summary: A novel model reduction technique for static systems is presented. The method is developed using a goal-oriented framework, and it extends the concept of snapshots for proper orthogonal decomposition (POD) to include (sensitivity) derivatives of the state with respect to system input parameters. The resulting reduced-order model generates accurate approximations due to its goal-oriented construction and the explicit ’training’ of the model for parameter changes. The model is less computationally expensive to construct than typical POD approaches, since efficient multiple right-hand side solvers can be used to compute the sensitivity derivatives. The effectiveness of the method is demonstrated on a parameterized aerospace structure problem.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Antoulas, Approximation of Large-scale Dynamical Systems (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[2] Avery, A Padé-based factorization-free algorithm for identifying the eigenvalues missed by a generalized symmetric eigensolver, International Journal for Numerical Methods in Engineering 79 pp 239– (2009) · Zbl 1171.74462 · doi:10.1002/nme.2572
[3] Noor, Reduced basis technique for nonlinear analysis of structures, AIAA Journal 18 (4) pp 455– (1980) · doi:10.2514/3.50778
[4] Peterson, The reduced basis method for incompressible viscous flow calculations, SIAM Journal on Scientific and Statistical Computing 10 pp 777– (1989) · Zbl 0672.76034 · doi:10.1137/0910047
[5] Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations, Mathematics of Computation 45 (172) pp 487– (1985) · Zbl 0586.65040 · doi:10.1090/S0025-5718-1985-0804937-0
[6] Ito, A reduced-order method for simulation and control of fluid flows, Journal of Computational Physics 143 (2) pp 403– (1998) · Zbl 0936.76031 · doi:10.1006/jcph.1998.5943
[7] Gunzburger, Perspectives in Flow Control and Optimization (2003)
[8] Tröltzsch, POD a posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications 44 (1) pp 83– (2009) · Zbl 1189.49050 · doi:10.1007/s10589-008-9224-3
[9] Amsallem, An interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA Journal 46 (7) pp 1803– (2008) · doi:10.2514/1.35374
[10] Amsallem, Toward real-time CFD-based aeroelastic computations using a database of reduced-order information, AIAA Journal 48 pp 2029– (2010) · doi:10.2514/1.J050233
[11] Amsallem, A method for interpolating on manifolds structural dynamics reduced-order models, International Journal for Numerical Methods in Engineering 78 pp 275– (2009) · Zbl 1176.74077
[12] Rozza, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering 15 (3) pp 229– (2008) · Zbl 1304.65251 · doi:10.1007/s11831-008-9019-9
[13] Huynh, Reduced basis approximation and a posteriori error estimation for stress intensity factors, International Journal for Numerical Methods in Engineering 72 (10) pp 1219– (2007) · Zbl 1194.74413 · doi:10.1002/nme.2090
[14] Oliveira, Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations, Optimization and Engineering 8 (1) pp 43– (2007) · Zbl 1171.65404 · doi:10.1007/s11081-007-9002-6
[15] Bergmann, Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Physics of Fluids 17 (9) pp 097101– (2005) · Zbl 1187.76044 · doi:10.1063/1.2033624
[16] Arian E Fahl M Sachs EW Trust-region proper orthogonal decomposition for flow control 2000
[17] Kunisch, Proper orthogonal decomposition for optimality systems, Mathematical Modelling and Numerical Analysis 42 (1) pp 1– (2008) · Zbl 1141.65050 · doi:10.1051/m2an:2007054
[18] Afanasiev, Lecture Notes in Pure and Applied Mathematics, in: Shape Optimization and Optimal Design pp 317– (2001)
[19] Ravindran, A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, International Journal for Numerical Methods in Fluids 34 (5) pp 425– (2000) · Zbl 1005.76020 · doi:10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
[20] Carlberg K Farhat C An adaptive POD-Krylov reduced-order model for structural optimization 2009
[21] Carlberg K Farhat C A compact proper orthogonal decomposition basis for optimization-oriented reduced-order models · Zbl 1235.74352
[22] Nocedal, Numerical Optimization (2006)
[23] Willcox K Ghattas O van Bloemen Waanders B Bader B An optimization framework for goal-oriented model-based reduction of large-scale systems · Zbl 1123.65081
[24] Bui-Thanh, Goal-oriented, model-constrained optimization for reduction of large-scale systems, Journal of Computational Physics 224 (2) pp 880– (2007) · Zbl 1123.65081 · doi:10.1016/j.jcp.2006.10.026
[25] Rathinam, A new look at proper orthogonal decomposition, SIAM Journal on Numerical Analysis 41 (5) pp 1893– (2003) · Zbl 1053.65106 · doi:10.1137/S0036142901389049
[26] Saad, Iterative Methods for Sparse Linear Systems (2003) · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[27] Carlberg, Efficient nonlinear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, International Journal for Numerical Methods in Engineering (2010) · Zbl 1235.74351
[28] Sirovich, Turbulence and the dynamics of coherent structures. I-Coherent structures, Quarterly of Applied Mathematics 45 pp 561– (1987) · Zbl 0676.76047
[29] Hay A Borggaard J Pelletier D On the use of sensitivity analysis to improve reduced-order models · Zbl 1181.76045
[30] Eldred, A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization, Structural and Multidisciplinary Optimization 38 (6) pp 599– (2009) · doi:10.1007/s00158-008-0309-5
[31] Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, International Journal of Bifurcation and Chaos 15 (3) pp 997– (2005) · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[32] O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its Applications 29 pp 293– (1980) · Zbl 0426.65011 · doi:10.1016/0024-3795(80)90247-5
[33] Saad Y On the Lanczos method for solving symmetric linear systems with several right-hand sides 1987 651 662 · Zbl 0615.65038
[34] Tezaur, Iterative solution of large-scale acoustic scattering problems with multiple right-hand sides by a domain decomposition method with Lagrange multipliers, International Journal for Numerical Methods in Engineering 51 pp 1175– (2001) · Zbl 1002.76072 · doi:10.1002/nme.212
[35] Erhel, An augmented conjugate gradient method for solving consecutive symmetric positive definite linear systems, SIAM Journal on Matrix Analysis and Applications 21 (4) pp 1279– (2000) · Zbl 0966.65031 · doi:10.1137/S0895479897330194
[36] Haftka, Recent developments in structural sensitivity analysis, Structural and Multidisciplinary Optimization 1 (3) pp 137– (1989) · doi:10.1007/BF01637334
[37] Prud’homme, Reliable real-time solution of parameterized partial differential equations: reduced-basis output bound methods, Journal of Fluids Engineering 124 (1) pp 70– (2002) · doi:10.1115/1.1448332
[38] Rozza, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering 15 (3) pp 1– (2007) · doi:10.1007/BF03024948
[39] Veroy K Prud’homme C Rovas D Patera A A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations
[40] Nguyen, Handbook of Materials Modeling (2005)
[41] Veroy, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, International Journal for Numerical Methods in Fluids 47 (8) pp 773– (2005) · Zbl 1134.76326 · doi:10.1002/fld.867
[42] Chaturantabut S Sorensen D Discrete empirical interpolation for nonlinear model reduction 2009 · Zbl 1217.65169
[43] Galbally, Non-linear model reduction for uncertainty quantification in large-scale inverse problems, International Journal for Numerical Methods in Engineering (2009) · Zbl 1183.76837 · doi:10.1002/nme.2746
[44] Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM Journal on Scientific Computing 32 pp 997– (2010) · Zbl 1221.35030 · doi:10.1137/090760453
[45] Sandford M Seidel D Eckstrom C Spain C Geometrical and structural properties of an aeroelastic research wing (ARW-2) 1989
[46] Imam, Three-dimensional shape optimization, International Journal for Numerical Methods in Engineering 18 (5) pp 661– (1982) · Zbl 0482.73071 · doi:10.1002/nme.1620180504
[47] Farin, Curves and Surfaces for Computer Aided Geometric Design (1992) · Zbl 0918.68127
[48] Maute K Raulli M 2006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.