×

Efficient non linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. (English) Zbl 1235.74351

Summary: A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non linear models while retaining their accuracy.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Sirovich, Turbulence and the dynamics of coherent structures. I-coherent structures, Quarterly of Applied Mathematics 45 pp 561– (1987) · Zbl 0676.76047
[2] Holmes, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996) · doi:10.1017/CBO9780511622700
[3] Antoulas, Approximation of Large-scale Dynamical Systems (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[4] Rozza, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering 15 (3) pp 1– (2007) · doi:10.1007/BF03024948
[5] Veroy K Prud’homme C Rovas DV Patera AT A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations
[6] Nguyen, Handbook of Materials Modeling pp 1529– (2005)
[7] Veroy, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, International Journal for Numerical Methods in Fluids 47 (8) pp 773– (2005) · Zbl 1134.76326 · doi:10.1002/fld.867
[8] Hall KC Thomas JP Dowell EH Reduced-order modelling of unsteady small-disturbance flows using a frequency domain proper orthogonal decomposition technique
[9] LeGresley PA Alonso JJ Airfoil design optimization using reduced order models based on proper orthogonal decomposition
[10] Hall, Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows, AIAA Journal 38 (2) pp 1853– (2000) · doi:10.2514/2.867
[11] Willcox, Balanced model reduction via the proper orthogonal decomposition, AIAA Journal 40 (11) pp 2323– (2002) · doi:10.2514/2.1570
[12] Epureanu, A parametric analysis of reduced order models of viscous flows in turbomachinery, Journal of Fluids and Structures 17 pp 971– (2003) · doi:10.1016/S0889-9746(03)00044-6
[13] Thomas, Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced order models, Journal of Aircraft 40 (3) pp 544– (2003) · doi:10.2514/2.3128
[14] Kim, Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis, AIAA Journal 43 (12) pp 2487– (2005) · doi:10.2514/1.11246
[15] Lieu, Reduced-order fluid/structure modeling of a complete aircraft configuration, Computer Methods in Applied Mechanics and Engineering 195 pp 5730– (2006) · Zbl 1124.76042 · doi:10.1016/j.cma.2005.08.026
[16] Lieu, Adaptation of aeroelastic reduced-order models and application to an F-16 configuration, AIAA Journal 45 pp 1244– (2007) · doi:10.2514/1.24512
[17] Amsallem, An interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA Journal 46 pp 1803– (2008) · doi:10.2514/1.35374
[18] Bergmann, Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Physics of Fluids 17 (9) pp 80– (2005) · Zbl 1187.76044 · doi:10.1063/1.2033624
[19] Han, Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures, Journal of Vibration and Control 8 (1) pp 19– (2002) · Zbl 1010.74549 · doi:10.1177/1077546302008001518
[20] Amabili, Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method, Journal of Fluids and Structures 18 (2) pp 227– (2003) · doi:10.1016/j.jfluidstructs.2003.06.002
[21] Kerschen, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dynamics 41 pp 147– (2005) · Zbl 1103.70011 · doi:10.1007/s11071-005-2803-2
[22] Amsallem, A method for interpolating on manifolds structural dynamics reduced-order models, International Journal for Numerical Methods in Engineering 78 pp 275– (2009) · Zbl 1176.74077
[23] Grepl, Proceedings of the Second Sandia Workshop of PDE-Constrained Optimization pp 197– (2007)
[24] Grepl, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, Mathematical Modelling and Numerical Analysis 41 (3) pp 575– (2007) · Zbl 1142.65078 · doi:10.1051/m2an:2007031
[25] Nguyen, An efficient reduced-order modeling approach for non-linear parametrized partial differential equations, International Journal for Numerical Methods in Engineering 76 pp 27– (2008) · Zbl 1162.65407 · doi:10.1002/nme.2309
[26] Astrid, Missing point estimation in models described by proper orthogonal decomposition, IEEE Transactions on Automatic Control 53 (10) pp 2237– (2008) · Zbl 1367.93110 · doi:10.1109/TAC.2008.2006102
[27] Chaturantabut S Sorensen DC Discrete empirical interpolation for nonlinear model reduction 2009
[28] Galbally, Non-linear model reduction for uncertainty quantification in large-scale inverse problems, International Journal for Numerical Methods in Engineering 81 (12) pp 1581– (2010) · Zbl 1183.76837
[29] Everson, Karhunen-Loeve procedure for gappy data, Journal of the Optical Society of America A 12 (8) pp 1657– (1995) · doi:10.1364/JOSAA.12.001657
[30] Barrault, An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathématique Académie des Sciences 339 (9) pp 667– (2004) · Zbl 1061.65118 · doi:10.1016/j.crma.2004.08.006
[31] Queipo, Surrogate-based analysis and optimization, Progress in Aerospace Sciences 41 (1) pp 1– (2005) · doi:10.1016/j.paerosci.2005.02.001
[32] Rowley, Model reduction for compressible flows using POD and Galerkin projection, Physica D: Nonlinear Phenomena 189 pp 115– (2004) · Zbl 1098.76602 · doi:10.1016/j.physd.2003.03.001
[33] Rathinam, A new look at proper orthogonal decomposition, SIAM Journal on Numerical Analysis 41 (5) pp 1893– (2003) · Zbl 1053.65106 · doi:10.1137/S0036142901389049
[34] Saad, Iterative Methods for Sparse Linear Systems (2003) · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[35] Golub, Matrix Computations (1996)
[36] Nocedal, Numerical Optimization (2006)
[37] Kelley, Iterative Methods for Linear and Nonlinear Equations (1995) · Zbl 0832.65046 · doi:10.1137/1.9781611970944
[38] Bui-Thanh, Model reduction for large-scale systems with high-dimensional parametric input space, SIAM Journal on Scientific Computing 30 (6) pp 3270– (2008) · Zbl 1196.37127 · doi:10.1137/070694855
[39] Ahmed, SAE Paper 840300 (1984)
[40] Hinterberger, Lecture Notes in Applied and Computational Mechanics 19, in: The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (2004) · doi:10.1007/978-3-540-44419-0_7
[41] Bui-Thanh T Murali D Willcox K Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics
[42] Bui-Thanh, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA Journal 42 (8) pp 1505– (2004) · doi:10.2514/1.2159
[43] Venturi, Gappy data and reconstruction procedures for flow past a cylinder, Journal of Fluid Mechanics 519 pp 315– (2004) · Zbl 1065.76159 · doi:10.1017/S0022112004001338
[44] Willcox, Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition, Computers and Fluids 35 (2) pp 208– (2006) · Zbl 1160.76394 · doi:10.1016/j.compfluid.2004.11.006
[45] Robinson T Eldred M Willcox K Haimes R Strategies for multifidelity optimization with variable dimensional hierarchical models
[46] Bos R Bombois X Van den Hof P Accelerating large-scale non-linear models for monitoring and control using spatial and temporal correlations 2004 3705 3710
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.