×

On a convergent DSA preconditioned source iteration for a DGFEM method for radiative transfer. (English) Zbl 1446.65177

Summary: We consider the numerical approximation of the radiative transfer equation using discontinuous angular and continuous spatial approximations for the even parts of the solution. The even-parity equations are solved using a diffusion synthetic accelerated source iteration. We provide a convergence analysis for the infinite-dimensional iteration as well as for its discretized counterpart. The diffusion correction is computed by a subspace correction, which leads to a convergence behavior that is robust with respect to the discretization. The proven theoretical contraction rate deteriorates for scattering dominated problems. We show numerically that the preconditioned iteration is in practice robust in the diffusion limit. Moreover, computations for the lattice problem indicate that the presented discretization does not suffer from the ray effect. The theoretical methodology is presented for plane-parallel geometries with isotropic scattering, but the approach and proofs generalize to multi-dimensional problems and more general scattering operators verbatim.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
78A40 Waves and radiation in optics and electromagnetic theory
78A45 Diffraction, scattering
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
82D75 Nuclear reactor theory; neutron transport

References:

[1] Chandrasekhar, S., Radiative Transfer (1960), Dover Publications, Inc. · Zbl 0037.43201
[2] Case, K. M.; Zweifel, P. F., Linear Transport Theory (1967), Addison-Wesley: Addison-Wesley Reading · Zbl 0162.58903
[3] Vladimirov, V. S., Mathematical Problems in the One-Velocity Theory of Particle TransportTech. rep. (1961), Atomic Energy of Canada Ltd. AECL-1661, translated from Transactions of the V.A. Steklov Mathematical Institute (61)
[4] Lewis, E. E.; Miller, W. F., Computational Methods of Neutron Transport (1984), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore · Zbl 0594.65096
[5] Pitkäranta, J., Approximate solution of the transport equation by methods of Galerkin type, J. Math. Anal. Appl., 60, 186-210 (1977) · Zbl 0369.45007
[6] Manteuffel, T. A.; Ressel, K. J.; Starke, G., A boundary functional for the least-squares finite-element solution for neutron transport problems, SIAM J. Numer. Anal., 2, 556-586 (2000) · Zbl 0949.65142
[7] Egger, H.; Schlottbom, M., A mixed variational framework for the radiative transfer equation, Math. Models Methods Appl. Sci., 22, Article 1150014 pp. (2012) · Zbl 1247.65163
[8] Egger, H.; Schlottbom, M., A perfectly matched layer approach for radiative transfer in highly scattering regimes., SIAM J. Numer. Anal., 57, 5, 2166-2188 (2019) · Zbl 1428.65062
[9] Dubroca, B.; Frank, M.; Klar, A.; Thömmes, G., A half space moment approximation to the radiative heat transfer equations, ZAMM Z. Angew. Math. Mech., 83, 12, 853-858 (2003) · Zbl 1103.80300
[10] Frank, M., Approximate models for radiative transfer, Bull. Inst. Math. Acad. Sin. (N.S.), 2, 2, 409-432 (2007) · Zbl 1130.85006
[11] Johnson, C.; Pitkäranta, J., Convergence of a fully discrete scheme for two-dimensional neutron transport, SIAM J. Numer. Anal., 20, 951-966 (1983) · Zbl 0538.65097
[12] Asadzadeh, M., Analysis of a fully discrete scheme for neutron transport in two-dimensional geometry, SIAM J. Numer. Anal., 23, 543-561 (1986) · Zbl 0608.65098
[13] Reed, W. H.; Hill, T. R., Triangular Mesh Methods for the Neutron Transport EquationTech. rep. (1973), Los Alamos Scientific Laboratory of the University of California
[14] Wareing, T.; McGhee, J.; Morel, J.; Pautz, S., Discontinuous finite element \(S_N\) methods on three-dimensional unstructured grids, Nucl. Sci. Eng., 138, 1-13 (2001)
[15] Ragusa, J. C.; Guermond, J.-L.; Kanschat, G., A robust \(S_N\)-DG-approximation for radiation transport in optically thick and diffusive regimes, J. Comput. Phys., 231, 4, 1947-1962 (2012) · Zbl 1245.82063
[16] Kanschat, G.; Ragusa, J.-C., A robust multigrid preconditioner for \(S_N \operatorname{DG}\) approximation of monochromatic, isotropic radiation transport problems, SIAM J. Sci. Comput., 36, 5, A2326-A2345 (2014) · Zbl 1314.82038
[17] Kópházi, J.; Lathouwers, D., A space-angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement, J. Comput. Phys., 297, 637-668 (2015) · Zbl 1349.65622
[18] Clarke, P.; Wang, H.; Garrard, J.; Abedi, R.; Mudaliar, S., Space-angle discontinuous Galerkin method for plane-parallel radiative transfer equation, J. Quant. Spectrosc. Radiat. Transfer, 233, 87-98 (2019)
[19] Marchuk, G. I.; Lebedev, V. I., Numerical Methods in the Theory of Neutron Transport (1986), Harwood Academic Publishers: Harwood Academic Publishers Chur, London, Paris, New York
[20] Adams, M. L.; Larsen, E. W., Fast iterative methods for discrete-ordinates particle transport calculations, Prog. Nucl. Energy, 40, 1, 3-159 (2002)
[21] Dahmen, W.; Gruber, F.; Mula, O., An adaptive nested source term iteration for radiative transfer equations, Math. Comp., 1 (2019)
[22] Warsa, J. S.; Wareing, T. A.; Morel, J. E., Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for multidimensional \(S_N\) calculations in problems with material discontinuities, Nucl. Sci. Eng., 147, 3, 218-248 (2004)
[23] Larsen, E. W.; Keller, J. B., Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys., 15, 75-81 (1974)
[24] Egger, H.; Schlottbom, M., Diffusion asymptotics for linear transport with low regularity, Asymptot. Anal., 89, 3-4, 365-377 (2014) · Zbl 1304.35689
[25] Ren, K.; Zhang, R.; Zhong, Y., A fast algorithm for radiative transport in isotropic media, J. Comput. Phys., 399, 108958 (2019) · Zbl 1453.65362
[26] Fan, Y.; An, J.; Ying, L., Fast algorithms for integral formulations of steady-state radiative transfer equation, J. Comput. Phys., 380, 191-211 (2019) · Zbl 1451.65234
[27] Brunner, T. A., Forms of approximate radiation transport, (Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew Gatlinburg (2003), American Nuclear Society: American Nuclear Society LaGrange Park, IL), Tennessee, April 6-11, 2003
[28] Agoshkov, V., Boundary Value Problems for Transport Equations, Modeling and Simulation in Science, Engineering and Technology (1998), Birkhäuser: Birkhäuser Boston · Zbl 0914.35001
[29] Egger, H.; Schlottbom, M., An \(L^p\) theory for stationary radiative transfer, Appl. Anal., 93, 6, 1283-1296 (2014) · Zbl 1292.35091
[30] Blake, J. C., Domain Decomposition Methods for Nuclear Reactor Modelling with Diffusion Acceleration (2016), University of Bath, (Ph.D. thesis)
[31] Helmberg, G., Introduction to spectral theory in Hilbert space, North-Holland Series in Applied Mathematics and Mechanics, xiii+346 (1969), North-Holland Publishing Co., Amsterdam-London; Wiley Interscience Division John Wiley & Sons, Inc.: North-Holland Publishing Co., Amsterdam-London; Wiley Interscience Division John Wiley & Sons, Inc. New York · Zbl 1216.46001
[32] Werner, D., Funktionalanalysis, xii+501 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0964.46001
[33] Dautray, R.; Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems II, Vol. 6 (1993), Springer: Springer Berlin · Zbl 0802.35001
[34] Morel, J. E.; Manteuffel, T. A., An angular multigrid acceleration technique for \(S_N\) equations with highly forward-peaked scattering, Nucl. Sci. Eng., 107, 4, 330-342 (1991)
[35] Lee, B., A multigrid framework for \(S_N\) discretizations of the Boltzmann transport equation, SIAM J. Sci. Comput., 34, 4, A2018-A2047 (2012) · Zbl 1276.82057
[36] Densmore, J. D.; Gill, D. F.; Pounders, J. M., Cellwise block iteration as a multigrid smoother for discrete-ordinates radiation-transport calculations, J. Comput. Theoret. Transp., 46, 1, 20-45 (2016) · Zbl 07499536
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.