×

A mixed variational framework for the radiative transfer equation. (English) Zbl 1247.65163

The paper is concerned with presenting a variational framework for the analysis and discretisaton of the radiative transfer equation. Results are provided on weak and strong solutions and a range of numerical methods is considered with particular focus on approximation using Galerkin methods and a finite element example.
The main contributions of the work, apart from the proposed variational framework, are the derivation of simple conditions for stability and quasi-optimal error estimates for Galerkin approximations, and a rigorous derivation of a second order form of the radiative transfer equation.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
85A25 Radiative transfer in astronomy and astrophysics
78A40 Waves and radiation in optics and electromagnetic theory

References:

[1] Ackroyd, R. T., Finite Element Methods for Particle Transport: Applications to Reactor and Radiation Physics, 1997, Taylor & Francis
[2] Adams, M. L.Larsen, E. W., Prog. Nucl. Energy40, 3 (2002).
[3] Arridge, S. R., Inv. Probl.15, R41 (1999). · Zbl 0926.35155
[4] Asadzadeh, M., SIAM J. Numer. Anal.23, 543 (1986). · Zbl 0608.65098
[5] Aydin, E. D.de Oliveira, C. R. R.Goddard, A. J. H., Med. Phys.29, 2013 (2002).
[6] Aydin, E. D.de Oliveira, C. R. R.Goddard, A. J. H., J. Quantitative Spectroscopy & Radiative Transfer84, 247 (2004).
[7] Babuška, I., Numer. Math.16, 322 (1971). · Zbl 0214.42001
[8] Babuška, I.; Aziz, A. K., The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, 1972, Academic Press
[9] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, 1991, Springer · Zbl 0788.73002
[10] K. M. Case and P. F. Zweifel, Existence and uniqueness theorems for the neutron transport equation (Defense Documentation Center for Scientific and Technical Information, 1963).
[11] Case, K. M.; Zweifel, P. F., Linear Transport Theory, 1967, Addison-Wesley · Zbl 0162.58903
[12] Chandrasekhar, S., Radiative Transfer, 1960, Dover
[13] Dautray, R.; Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, 6, 1993, Springer
[14] Davison, B., Neutron Transport Theory, 1957, Oxford Univ. Press · Zbl 0077.22505
[15] H. Egger and M. Schlottbom, Numerical methods for radiative transfer based on mixed variational principles, Technical Report, AICES, RWTH Aachen, 2011.
[16] Henyey, L. G.Greenstein, J. L., Astrophys. J.93, 70 (1941).
[17] Hielscher, A. H.Alcouffe, R. E.Barbour, R. L., Phys. Med. Biol.43, 1285 (1998).
[18] Johnson, C.Pitkäranta, J., SIAM J. Numer. Anal.20, 951 (1983). · Zbl 0538.65097
[19] Kanschat, G., Numerical Methods in Multidimensional Radiative Transfer, 2009, Springer-Verlag
[20] Lewis, E. E.; Miller, W. F., Computational Methods of Neutron Transport, 1984, John Wiley & Sons
[21] Manteuffel, T. A.Ressel, K. J., SIAM J. Numer. Anal.35, 806 (1998). · Zbl 0956.65125
[22] Manteuffel, T. A.Ressel, K. J.Starke, G., SIAM J. Numer. Anal.2, 556 (2000).
[23] Nečas, J., Ann. Sc. Norm. Sup.16, 305 (1962). · Zbl 0112.33101
[24] Widmer, G.Hiptmair, R.Schwab, C., J. Comput. Phys.227, 6071 (2008). · Zbl 1147.65095
[25] Wright, S.; Arridge, S. R.; Schweiger, M., Numerical Methods in Multidimensional Radiative Transfer, 2009, Springer
[26] Wright, S.Schweiger, M.Arridge, S. R., Meas. Sci. Technol.18, 79 (2007).
[27] Xu, J.Zikatanov, L., Numer. Math.94, 195 (2003). · Zbl 1028.65115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.