×

Canonical and noncanonical Hamiltonian operator inference. (English) Zbl 1536.65164

Summary: A method for the nonintrusive and structure-preserving model reduction of canonical and noncanonical Hamiltonian systems is presented. Based on the idea of operator inference, this technique is provably convergent and reduces to a straightforward linear solve given snapshot data and gray-box knowledge of the system Hamiltonian. Examples involving several hyperbolic partial differential equations show that the proposed method yields reduced models which, in addition to being accurate and stable with respect to the addition of basis modes, preserve conserved quantities well outside the range of their training data.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Sirovich, L., Turbulence and the dynamics of coherent structures, part III: dynamics and scaling. Q. Appl. Math., 3, 583-590 (1987)
[2] Holmes, P.; Lumley, J.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press · Zbl 0890.76001
[3] Rowley, C.; Colonius, T.; Murray, R., Model reduction for compressible flows using POD and Galerkin projection. Physica D, 115-129 (2004) · Zbl 1098.76602
[4] Schmid, P., Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech., 5-28 (2010) · Zbl 1197.76091
[5] Rowley, C., Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurcation Chaos, 3, 997-1013 (2005) · Zbl 1140.76443
[6] Willcox, K.; Peraire, J., Balanced model reduction via the proper orthogonal decomposition. AIAA J., 11, 2323-2330 (2002)
[7] Gugercin, S.; Antoulas, A., A survey of model reduction by balanced truncation and some new results. Internat. J. Control, 8, 748-766 (2004) · Zbl 1061.93022
[8] Moore, B., Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Control, 1 (1981) · Zbl 0464.93022
[9] Rozza, G., Reduced basis approximation and error bounds for potential flows in parametrized geometries. Commun. Comput. Phys., 1, 1-48 (2011) · Zbl 1284.76295
[10] Veroy, K.; Patera, A., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-bases a posteriori error bounds. J. Numer. Meth. Fluids, 773-788 (2005) · Zbl 1134.76326
[11] Lee, K.; Carlberg, K. T., Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. (2020) · Zbl 1454.65184
[12] Fresca, S.; Gobat, G.; Fedeli, P.; Frangi, A.; Manzoni, A., Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures. Internat. J. Numer. Methods Engrg., 20, 4749-4777 (2022), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7054. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.7054 · Zbl 07769309
[13] Kim, Y.; Choi, Y.; Widemann, D.; Zohdi, T., A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder. J. Comput. Phys. (2022), URL https://www.sciencedirect.com/science/article/pii/S0021999121007361 · Zbl 07517153
[14] Gruber, A.; Gunzburger, M.; Ju, L.; Wang, Z., A comparison of neural network architectures for data-driven reduced-order modeling. Comput. Methods Appl. Mech. Engrg. (2022), URL https://www.sciencedirect.com/science/article/pii/S004578252200113X
[15] Romor, F.; Stabile, G.; Rozza, G., Non-linear manifold reduced-order models with convolutional autoencoders and reduced over-collocation method. J. Sci. Comput., 74, 1-39 (2023) · Zbl 07698834
[16] Sharma, H.; Mu, H.; Buchfink, P.; Geelen, R.; Glas, S.; Kramer, B., Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds (2023), arXiv:2305.15490
[17] Barnett, J. L.; Farhat, C.; Maday, Y., Neural-network-augmented projection-based model order reduction for mitigating the Kolmogorov barrier to reducibility of CFD models (2022), arXiv:2212.08939
[18] Barnett, J.; Farhat, C., Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction. J. Comput. Phys. (2022), URL https://www.sciencedirect.com/science/article/pii/S0021999122004107 · Zbl 07540375
[19] Geelen, R.; Wright, S.; Willcox, K., Operator inference for non-intrusive model reduction with quadratic manifolds. Comput. Methods Appl. Mech. Engrg. (2023), URL https://www.sciencedirect.com/science/article/pii/S0045782522006727
[20] Pinkus, A.
[21] Peherstorfer, B.; Willcox, K., Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Engrg., 196-215 (2016), URL https://www.sciencedirect.com/science/article/pii/S0045782516301104 · Zbl 1436.93062
[22] Ghattas, O.; Willcox, K., Learning physics-based models from data: perspectives from inverse problems and model reduction. Acta Numer., 445-554 (2021) · Zbl 1520.65043
[23] Benner, P.; Goyal, P.; Kramer, B.; Peherstorfer, B.; Willcox, K., Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms. Comput. Methods Appl. Mech. Engrg. (2020), URL https://www.sciencedirect.com/science/article/pii/S0045782520306186
[24] Bui-Thanh, T.; Willcox, K.; Ghattas, O.; van Bloemen Waanders, B., Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput. Phys., 2, 880-896 (2007), URL https://www.sciencedirect.com/science/article/pii/S0021999106005535 · Zbl 1123.65081
[25] Barone, M. F.; Kalashnikova, I.; Segalman, D. J.; Thornquist, H. K., Stable Galerkin reduced order models for linearized compressible flow. J. Comput. Phys., 6, 1932-1946 (2009), URL https://www.sciencedirect.com/science/article/pii/S0021999108006098 · Zbl 1162.76025
[26] Kalashnikova, I.; Arunajatesan, S.; Barone, M.; van Bloemen Waanders, B.; Fike, J., Reduced Order Modeling for Prediction and Control of Large-Scale SystemsTech. rep. (2014), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM
[27] Rowley, C. W.; Colonius, T.; Murray, R. M., Model reduction for compressible flows using POD and Galerkin projection. Physica D, 1, 115-129 (2004), URL https://www.sciencedirect.com/science/article/pii/S0167278903003841 · Zbl 1098.76602
[28] Serre, G.; Lafon, P.; Gloerfelt, X.; Bailly, C., Reliable reduced-order models for time-dependent linearized Euler equations. J. Comput. Phys., 15, 5176-5194 (2012), URL https://www.sciencedirect.com/science/article/pii/S0021999112002008 · Zbl 1248.35155
[29] I. Kalashnikova, M. Barone, Stable and Efficient Galerkin Reduced Order Models for Non-Linear Fluid Flow, in: AIAA-2011-3110, 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, 2011.
[30] Chan, J., Entropy stable reduced order modeling of nonlinear conservation laws. J. Comput. Phys. (2020), URL https://www.sciencedirect.com/science/article/pii/S0021999120305635
[31] Parish, E. J.; Rizzi, F., On the impact of dimensionally-consistent and physics-based inner products for POD-Galerkin and least-squares model reduction of compressible flows (2022), arXiv:2203.16492
[32] Balajewicz, M.; Tezaur, I.; Dowell, E., Minimal subspace rotation on the stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier-Stokes equations. J. Comput. Phys., 224-241 (2016), URL https://www.sciencedirect.com/science/article/pii/S0021999116301826 · Zbl 1349.76171
[33] Kalashnikova, I.; van Bloemen Waanders, B.; Arunajatesan, S.; Barone, M., Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment. Comput. Methods Appl. Mech. Engrg., 251-270 (2014), URL https://www.sciencedirect.com/science/article/pii/S0045782514000164 · Zbl 1296.93165
[34] Rezaian, E.; Wei, M., A global eigenvalue reassignment method for the stabilization of nonlinear reduced-order models. Internat. J. Numer. Methods Engrg., 10, 2393-2416 (2021), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6625. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6625 · Zbl 07863757
[35] Klein, R. B.; Sanderse, B., Structure-preserving hyper-reduction and temporal localization for reduced order models of incompressible flows (2023), arXiv:2304.09229
[36] Carlberg, K.; Choi, Y.; Sargsyan, S., Conservative model reduction for finite-volume models. J. Comput. Phys., 280-314 (2018), URL https://www.sciencedirect.com/science/article/pii/S002199911830319X · Zbl 1415.65208
[37] Carlberg, K.; Farhat, C.; Bou-Mosleh, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. Internat. J. Numer. Methods Engrg., 2, 155-181 (2011) · Zbl 1235.74351
[38] Rosenberger, H. K.E.; Sanderse, B., Momentum-conserving ROMs for the incompressible Navier-Stokes equations (2022), arXiv:2208.09360
[39] Mohebujjaman, M.; Rebholz, L.; Iliescu, T., Physically constrained data-driven correction for reduced-order modeling of fluid flows. Internat. J. Numer. Methods Fluids, 3, 103-122 (2019), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4684. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.4684
[40] Sharma, H.; Wang, Z.; Kramer, B., Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems. Physica D (2022) · Zbl 1487.65193
[41] Sharma, H.; Kramer, B., Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems (2022), arXiv:2203.06361
[42] Lall, S.; Krysl, P.; Marsden, J. E., Structure-preserving model reduction for mechanical systems. Physica D, 1, 304-318 (2003), URL https://www.sciencedirect.com/science/article/pii/S0167278903002276. Complexity and Nonlinearity in Physical Systems - A Special Issue to Honor Alan Newell · Zbl 1041.70011
[43] Carlberg, K.; Tuminaro, R.; Boggs, P., Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput., 2, B153-B184 (2015), arXiv:https://doi.org/10.1137/140959602 · Zbl 1320.65193
[44] S. Chaturantabut, D.C. Sorensen, Discrete Empirical Interpolation for nonlinear model reduction, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, 2009, pp. 4316-4321, http://dx.doi.org/10.1109/CDC.2009.5400045
[45] Everson, R.; Sirovich, L., Karhunen-Loève procedure for gappy data. J. Opt. Soc. Amer. A, 8, 1657-1664 (1995), URL https://opg.optica.org/josaa/abstract.cfm?URI=josaa-12-8-1657
[46] Farhat, C.; Chapman, T.; Avery, P., Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Internat. J. Numer. Methods Engrg., 5, 1077-1110 (2015), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4820. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4820 · Zbl 1352.74349
[47] Peng, L.; Mohseni, K., Symplectic model reduction of Hamiltonian systems (2014), URL https://arxiv.org/abs/1407.6118
[48] Hesthaven, J. S.; Pagliantini, C.; Ripamonti, N., Structure-preserving model order reduction of Hamiltonian systems (2021), URL https://arxiv.org/abs/2109.12367
[49] Buchfink, P.; Glas, S.; Haasdonk, B., Optimal bases for symplectic model order reduction of canonizable linear Hamiltonian systems*. IFAC-PapersOnLine, 20, 463-468 (2022), URL https://www.sciencedirect.com/science/article/pii/S2405896322013398. 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022
[50] Afkham, B. M.; Hesthaven, J. S., Structure preserving model reduction of parametric Hamiltonian systems. SIAM J. Sci. Comput., 6, A2616-A2644 (2017), arXiv:https://doi.org/10.1137/17M1111991 · Zbl 1379.78019
[51] Maboudi Afkham, B.; Hesthaven, J. S., Structure-preserving model-reduction of dissipative Hamiltonian systems. J. Sci. Comput., 1, 3-21 (2019) · Zbl 1433.37074
[52] Pagliantini, C.; Vismara, F., Gradient-preserving hyper-reduction of nonlinear dynamical systems via discrete empirical interpolation (2022), arXiv:2206.01792
[53] Gong, Y.; Wang, Q.; Wang, Z., Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems. Comput. Methods Appl. Mech. Engrg., 780-798 (2017), URL https://www.sciencedirect.com/science/article/pii/S0045782516308477 · Zbl 1439.37083
[54] Sockwell, K., Mass Conserving Hamiltonian-Structure Preserving Reduced Order Modeling for the Rotating Shallow Water Equations Discretized by a Mimetic Spatial Scheme (2019), Florida State University, (Ph.D. thesis)
[55] Sharma, H.; Kramer, B., Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale mechanical systems (2022), arXiv:2203.06361
[56] Buchfink, P.; Glas, S.; Haasdonk, B., Symplectic model reduction of Hamiltonian systems on nonlinear manifolds (2021), URL https://arxiv.org/abs/2112.10815
[57] Chaturantabut, S.; Beattie, C.; Gugercin, S., Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput., 5, B837-B865 (2016), arXiv:https://doi.org/10.1137/15M1055085 · Zbl 1376.37120
[58] Gruber, A.; Gunzburger, M.; Ju, L.; Wang, Z., Energetically consistent model reduction for metriplectic systems. Comput. Methods Appl. Mech. Engrg. (2023), URL https://www.sciencedirect.com/science/article/pii/S0045782522006648
[59] Qian, E.; Kramer, B.; Peherstorfer, B.; Willcox, K., Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems. Physica D (2020), URL https://www.sciencedirect.com/science/article/pii/S0167278919307651 · Zbl 1493.62512
[60] Khodabakhshi, P.; Willcox, K. E., Non-intrusive data-driven model reduction for differential-algebraic equations derived from lifting transformations. Comput. Methods Appl. Mech. Engrg. (2022), URL https://www.sciencedirect.com/science/article/pii/S0045782521005910
[61] Kramer, B.; Willcox, K., Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition. AIAA J., 6, 2297-2307 (2019)
[62] McQuarrie, S. A.; Huang, C.; Willcox, K. E., Data-driven reduced-order models via regularised operator inference for a single-injector combustion process. J. R. Soc. N.Z., 2, 194-211 (2021), arXiv:https://doi.org/10.1080/03036758.2020.1863237
[63] Swischuk, R.; Kramer, B.; Huang, C.; Willcox, K., Learning physics-based reduced-order models for a single-injector combustion process. AIAA J., 6, 2658-2672 (2020), arXiv:https://doi.org/10.2514/1.J058943
[64] B.G. Zastrow, A. Chaudhuri, K.E. Willcox, A.S. Ashley, M.C. Henson, Data-driven model reduction via operator inference for coupled aeroelastic flutter. http://dx.doi.org/10.2514/6.2023-0330https://arc.aiaa.org/doi/abs/10.2514/6.2023-0330arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2023-0330
[65] Issan, O.; Kramer, B., Predicting solar wind streams from the inner-heliosphere to earth via shifted operator inference. J. Comput. Phys. (2023), URL https://www.sciencedirect.com/science/article/pii/S0021999122007525 · Zbl 07625381
[66] Filanova, Y.; Duff, I. P.; Goyal, P.; Benner, P., An operator inference oriented approach for mechanical systems (2022), arXiv:2210.07710
[67] Guo, M.; McQuarrie, S. A.; Willcox, K. E., Bayesian operator inference for data-driven reduced-order modeling. Comput. Methods Appl. Mech. Engrg. (2022), URL https://www.sciencedirect.com/science/article/pii/S0045782522004273. A Special Issue in Honor of the Lifetime Achievements of J. Tinsley Oden
[68] N. Aretz, K. Willcox, Structure-Exploiting Learning for Nested Operator Inference, in: Presentation at SIAM Conference on Computational Science & Engineering, 2023.
[69] Kramer, B.; Willcox, K., 157-174
[70] Celledoni, E.; Grimm, V.; McLachlan, R. I.; McLaren, D. I.; O’Neale, D.; Owren, B.; Quispel, G. R.W., Preserving energy resp. dissipation in numerical PDEs using the “average vector field”method. J. Comput. Phys., 20, 6770-6789 (2012), URL https://www.sciencedirect.com/science/article/pii/S0021999112003373 · Zbl 1284.65184
[71] Touchette, H., Legendre-fenchel transforms in a nutshell (2005), URL http://www.maths.qmul.ac.uk/ ht/archive/lfth2.pdf
[72] Nutku, Y., On a new class of completely integrable nonlinear wave equations. I. infinitely many conservation laws. J. Math. Phys., 6, 1237-1242 (1985), arXiv:https://doi.org/10.1063/1.526530 · Zbl 0563.35050
[73] Nutku, Y., Lagrangian approach to integrable systems yields new symplectic structures for KdV, arXiv:hep-th/0011052 · Zbl 0983.70013
[74] Tu, J. H.; Rowley, C. W.; Luchtenburg, D. M.; Brunton, S. L.; Kutz, J. N., On dynamic mode decomposition: Theory and applications. J. Comput. Dyn., 2, 391-421 (2014) · Zbl 1346.37064
[75] Schmid, P. J., Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech., 225-254 (2022) · Zbl 1492.76092
[76] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., 1, 117-148 (2001) · Zbl 1005.65112
[77] Gong, Y.; Wang, Q.; Wang, Z., Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems. Comput. Methods Appl. Mech. Engrg., 780-798 (2017), URL https://www.sciencedirect.com/science/article/pii/S0045782516308477 · Zbl 1439.37083
[78] Lindsay, P.; Fike, J.; Tezaur, I.; Carlberg, K., Preconditioned least-squares Petrov-Galerkin reduced order models. Internat. J. Numer. Methods Engrg., 20, 4809-4843 (2022), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7056. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.7056 · Zbl 07769311
[79] Conneryd, J.; Lassen, A., Explicita symplektiska integratorer för icke-separabla Hamiltonianer i molekyldynamik (2019)
[80] Tao, M., Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance. Phys. Rev. E (2016)
[81] Karasözen, B.; Şimşek, G., Energy preserving integration of bi-Hamiltonian partial differential equations. Appl. Math. Lett., 12, 1125-1133 (2013), URL https://www.sciencedirect.com/science/article/pii/S0893965913001924 · Zbl 1308.35249
[82] Peherstorfer, B., Sampling low-dimensional Markovian dynamics for preasymptotically recovering reduced models from data with operator inference. SIAM J. Sci. Comput., 5, A3489-A3515 (2020) · Zbl 1456.65120
[83] Peregrine, D. H., Calculations of the development of an undular bore. J. Fluid Mech., 2, 321-330 (1966)
[84] Benjamin, T. B.; Bona, J. L.; Mahony, J. J., Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1220, 47-78 (1972), URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1972.0032arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1972.0032 · Zbl 0229.35013
[85] Evans, L. C., Partial Differential Equations, Vol. 19 (2010), American Mathematical Soc. · Zbl 1194.35001
[86] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P., SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 261-272 (2020)
[87] Marsden, J. E.; Ratiu, T., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems (1998), Springer
[88] Salinger, A.; Bartlett, R.; Bradley, A.; Chen, Q.; Demeshko, I.; Gao, X.; Hansen, G.; Mota, A.; Muller, R.; Nielsen, E.; Ostien, J.; Pawlowski, R.; Perego, M.; Phipps, E.; Sun, W.; Tezaur, I., Albany: Using agile components to develop a flexible, generic multiphysics analysis code. Int. J. Multiscale Comput. Eng., 415-438 (2016)
[89] Mota, A.; Tezaur, I.; Alleman, C., The Schwarz alternating method in solid mechanics. Comput. Methods Appl. Mech. Engrg., 19-51 (2017), URL https://www.sciencedirect.com/science/article/pii/S0045782516310982 · Zbl 1439.74450
[90] Mota, A.; Tezaur, I.; Phlipot, G., The Schwarz alternating method for transient solid dynamics. Internat. J. Numer. Methods Engrg., 21, 5036-5071 (2022), URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6982arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6982 · Zbl 07769269
[91] McQuarrie, S. A.; Huang, C.; Willcox, K. E., Data-driven reduced-order models via regularised operator inference for a single-injector combustion process. J. R. Soc. N.Z., 2, 194-211 (2021)
[92] Van Loan, C. F., The ubiquitous kronecker product. J. Comput. Appl. Math., 1-2, 85-100 (2000) · Zbl 0966.65039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.