×

Conservative model reduction for finite-volume models. (English) Zbl 1415.65208

Summary: This work proposes a method for model reduction of finite-volume models that guarantees the resulting reduced-order model is conservative, thereby preserving the structure intrinsic to finite-volume discretizations. The proposed reduced-order models associate with optimization problems characterized by a minimum-residual objective function and nonlinear equality constraints that explicitly enforce conservation over subdomains. Conservative Galerkin projection arises from formulating this optimization problem at the time-continuous level, while conservative least-squares Petrov-Galerkin (LSPG) projection associates with a time-discrete formulation. We equip these approaches with hyper-reduction techniques in the case of nonlinear flux and source terms, and also provide approaches for handling infeasibility. In addition, we perform analyses that include deriving conditions under which conservative Galerkin and conservative LSPG are equivalent, as well as deriving a posteriori error bounds. Numerical experiments performed on a parameterized quasi-1D Euler equation demonstrate the ability of the proposed method to ensure not only global conservation, but also significantly lower state-space errors than nonconservative reduced-order models such as standard Galerkin and LSPG projection.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65K10 Numerical optimization and variational techniques

References:

[1] Abgrall, R.; Amsallem, D.; Crisonovan, R., Robust model reduction by \(L^1\)-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems, Adv. Model. Simul. Eng. Sci., 3, 1-16 (2016)
[2] An, S.; Kim, T.; James, D., Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph. (TOG), 27, 165 (2008)
[3] Antil, H.; Field, S.; Herrmann, F.; Nochetto, R.; Tiglio, M., Two-step greedy algorithm for reduced order quadratures, J. Sci. Comput., 57, 604-637 (2013) · Zbl 1292.65024
[4] Antil, H.; Heinkenschloss, M.; Sorensen, D. C., Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems, (Quarteroni, A.; Rozza, G., Reduced Order Methods for Modeling and Computational Reduction. Reduced Order Methods for Modeling and Computational Reduction, Springer MS&A, vol. 8 (2013), Springer-Verlag Italia: Springer-Verlag Italia Milano)
[5] Astrid, P.; Weiland, S.; Willcox, K.; Backx, T., Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Autom. Control, 53, 2237-2251 (2008) · Zbl 1367.93110
[6] Aubry, N.; Holmes, P.; Lumley, J. L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173 (1988) · Zbl 0643.76066
[7] Balajewicz, M.; Dowell, E., Stabilization of projection-based reduced order models of the Navier-Stokes equations, Nonlinear Dyn., 70, 1619-1632 (2012)
[8] Balajewicz, M.; Dowell, E.; Noack, B., Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation, J. Fluid Mech., 729, 285-308 (2013) · Zbl 1291.76164
[9] Barone, M. F.; Kalashnikova, I.; Segalman, D. J.; Thornquist, H. K., Stable Galerkin reduced order models for linearized compressible flow, J. Comput. Phys., 228, 1932-1946 (2009) · Zbl 1162.76025
[10] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci., 339, 667-672 (2004) · Zbl 1061.65118
[11] Baumann, M.; Benner, P.; Heiland, J., Space-time Galerkin POD with application in optimal control of semi-linear parabolic partial differential equations (2016), arXiv preprint
[12] Bergmann, M.; Bruneau, C.-H.; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 516-538 (2009) · Zbl 1409.76099
[13] Bos, R.; Bombois, X.; Van den Hof, P., Accelerating large-scale non-linear models for monitoring and control using spatial and temporal correlations, (Proceedings of the American Control Conference, vol. 4 (2004)), 3705-3710
[14] Carlberg, K., Adaptive \(h\)-refinement for reduced-order models, Int. J. Numer. Methods Eng., 102, 1192-1210 (2015) · Zbl 1352.65136
[15] Carlberg, K.; Barone, M.; Antil, H., Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330, 693-734 (2017) · Zbl 1378.65145
[16] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 155-181 (2011) · Zbl 1235.74351
[17] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[18] Carlberg, K.; Tuminaro, R.; Boggs, P., Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37, B153-B184 (2015) · Zbl 1320.65193
[19] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[20] Choi, Y.; Carlberg, K., Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction (2017), arXiv preprint
[21] Deane, A.; Kevrekidis, I.; Karniadakis, G. E.; Orszag, S., Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders, Phys. Fluids A, Fluid Dyn., 3, 2337-2354 (1991) · Zbl 0746.76021
[22] Drohmann, M.; Haasdonk, B.; Ohlberger, M., Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34, A937-A969 (2012) · Zbl 1259.65133
[23] Everson, R.; Sirovich, L., Karhunen-Loève procedure for gappy data, J. Opt. Soc. Am. A, 12, 1657-1664 (1995)
[24] Fang, F.; Pain, C.; Navon, I.; Elsheikh, A.; Du, J.; Xiao, D., Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phys., 234, 540-559 (2013) · Zbl 1284.65132
[25] Farhat, C.; Avery, P.; Chapman, T.; Cortial, J., Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng., 98, 625-662 (2014) · Zbl 1352.74348
[26] Fick, L.; Maday, Y.; Patera, A. T.; Taddei, T., A reduced basis technique for long-time unsteady turbulent flows (2017), arXiv preprint
[27] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Methods Eng., 81, 1581-1608 (2009) · Zbl 1183.76837
[28] Galletti, B.; Bruneau, C.; Zannetti, L.; Iollo, A., Low-order modelling of laminar flow regimes past a confined square cylinder, J. Fluid Mech., 503, 161-170 (2004) · Zbl 1116.76344
[29] Gerbeau, J.-F.; Lombardi, D., Approximated Lax pairs for the reduced order integration of nonlinear evolution equations, J. Comput. Phys., 265, 246-269 (2014) · Zbl 1349.65548
[30] Haasdonk, B.; Ohlberger, M., Reduced basis method for explicit finite volume approximations of nonlinear conservation laws, (Proc. 12th International Conference on Hyperbolic Problems: Theory, Numerics, Application (2008)) · Zbl 1391.76413
[31] Haasdonk, B.; Ohlberger, M., Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: Math. Model. Numer. Anal., 42, 277-302 (2008) · Zbl 1388.76177
[32] Haasdonk, B.; Ohlberger, M.; Rozza, G., A reduced basis method for evolution schemes with parameter-dependent explicit operators, Electron. Trans. Numer. Anal., 32, 145-161 (2008) · Zbl 1391.76413
[33] Holmes, P.; Lumley, J.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press · Zbl 0890.76001
[34] Iollo, A.; Lanteri, S.; Desideri, J. A., Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations, Theor. Comput. Fluid Dyn., 13, 377-396 (2000) · Zbl 0987.76077
[35] Jolly, M.; Kevrekidis, I.; Titi, E., Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation, J. Dyn. Differ. Equ., 3, 179-197 (1991) · Zbl 0738.35024
[36] Kalashnikova, I.; Barone, M., On the stability and convergence of a Galerkin reduced order model (rom) of compressible flow with solid wall and far-field boundary treatment, Int. J. Numer. Methods Eng., 83, 1345-1375 (2010) · Zbl 1202.74123
[37] LeGresley, P. A., Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods (2006), Stanford University, PhD thesis
[38] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Eng., 311, 151-179 (2016) · Zbl 1439.76112
[39] Ma, X.; Karniadakis, G. E., A low-dimensional model for simulating three-dimensional cylinder flow, J. Fluid Mech., 458, 181-190 (2002) · Zbl 1001.76043
[40] MacCormack, R., Numerical Computation of Compressible Viscous Flow (2007), Stanford University, Tech. rep., Lecture notes for AA214b and AA214c
[41] Marion, M.; Temam, R., Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139-1157 (1989) · Zbl 0683.65083
[42] Noack, B.; Papas, P.; Monkewitz, P., The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523, 339-365 (2005) · Zbl 1065.76102
[43] Ohlberger, M.; Rave, S., Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing, C. R. Math., 351, 901-906 (2013) · Zbl 1281.65117
[44] Prud’homme, C.; Rovas, D.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A.; Turinici, G., Reliable real-time solution of parameterized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., 124, 70-80 (2002)
[45] Reddy, S. R.; Freno, B. A.; Cizmas, P. G.; Gokaltun, S.; McDaniel, D.; Dulikravich, G. S., Constrained reduced-order models based on proper orthogonal decomposition, Comput. Methods Appl. Mech. Eng., 321, 18-34 (2017) · Zbl 1439.76141
[46] Rowley, C.; Colonius, T.; Murray, R., Model reduction for compressible flows using POD and Galerkin projection, Phys. D: Nonlinear Phenom., 189, 115-129 (2004) · Zbl 1098.76602
[47] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 229-275 (2008) · Zbl 1304.65251
[48] Ryckelynck, D., A priori hyperreduction method: an adaptive approach, J. Comput. Phys., 202, 346-366 (2005) · Zbl 1288.65178
[49] San, O.; Iliescu, T., Proper orthogonal decomposition closure models for fluid flows: Burgers equation (2013), arXiv preprint
[50] Shen, J., Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38, 201-229 (1990) · Zbl 0684.65095
[51] Sirisup, S.; Karniadakis, G., A spectral viscosity method for correcting the long-term behavior of pod models, J. Comput. Phys., 194, 92-116 (2004) · Zbl 1136.76412
[52] Sirovich, L., Turbulence and the dynamics of coherent structures. III: dynamics and scaling, Q. Appl. Math., 45, 583-590 (1987) · Zbl 0676.76047
[53] Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G., Advances in reduced order modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method (2017), arXiv preprint · Zbl 1383.35175
[54] Stabile, G.; Rozza, G., Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations (2017), arXiv preprint · Zbl 1410.76264
[55] Taddei, T.; Perotto, S.; Quarteroni, A., Reduced basis techniques for nonlinear conservation laws, ESAIM: Math. Model. Numer. Anal., 49, 787-814 (2015) · Zbl 1316.65079
[56] Volkwein, S.; Weiland, S., An algorithm for Galerkin projections in both time and spatial coordinates, (Proc. 17th MTNS (2006))
[57] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237, 10-26 (2012) · Zbl 1253.76050
[58] Zahr, M. J.; Carlberg, K.; Amsallem, D.; Farhat, C., Comparison of Model Reduction Techniques on High-Fidelity Linear and Nonlinear Electrical, Mechanical, and Biological Systems (2010), University of California: University of California Berkeley
[59] Zimmermann, R.; Vendl, A.; Görtz, S., Reduced-order modeling of steady flows subject to aerodynamic constraints, AIAA J., 52 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.