×

Acceleration of the spectral stochastic FEM using POD and element based discrete empirical approximation for a micromechanical model of heterogeneous materials with random geometry. (English) Zbl 1441.74270

Summary: The spectral stochastic FEM with local basis functions in the stochastic domain (SL-FEM) is one of the most flexible and accurate stochastic methods, however, also the most computationally expensive. These expenses are traditionally associated with the extra large tangent stiffness matrix and a huge number of elements which need to be re-integrated in every iteration. In this work, we incorporate the proper orthogonal decomposition (POD) into the SL-FEM, thus performing a drastic reduction of the stiffness matrix. In order to reduce the integration costs by hyperreduction, a novel element-based modification of the discrete empirical interpolation, the so-called element-based empirical approximation method (EDEAM), is developed and combined with the POD. Particular advantages of the SL-FEM for order reduction and hyperreduction compared to other stochastic techniques are discussed. The new reduced-order SL-FEM is applied to the computational homogenization of materials with random geometry of the microstructure, i.e., to a general class of problems exhibiting strongly nonlinear, non-smooth and sometimes discontinuous dependency of the solution on some random parameters. The reduced-order SL-FEM demonstrates a high accuracy and a high solution speed, whereby the solution time for the reduced-order SL-FEM is comparable to the solution time of only one single Monte-Carlo sample.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74A40 Random materials and composite materials
74M25 Micromechanics of solids

Software:

redbKIT
Full Text: DOI

References:

[1] Andrianov, I.; Danishevs’kyy, V. V.; Weichert, D., Simple estimation on effective transport properties of a random composite material with cylindrical fibres, Z. Angew. Math. Phys., 59, 5, 889-903 (2008) · Zbl 1157.74033
[2] Bris, C. L.; Legoll, F., Examples of computational approaches for elliptic, possibly multiscale PDEs with random inputs, J. Comput. Phys., 328, Supplement C, 455-473 (2017) · Zbl 1406.35496
[3] Galipeau, E.; Rudykh, S.; deBotton, G.; Castaneda, P. P., Magnetoactive elastomers with periodic and random microstructures, Int. J. Solids Struct., 51, 18, 3012-3024 (2014)
[4] Kaminski, M., The Stochastic Perturbation Method for Computational Mechanics (2013), A John Wiley & Sons, Ltd. · Zbl 1275.74002
[5] Bansal, M.; Singh, I.; Mishra, B.; Sharma, K.; Khan, I., A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations, J. Nucl. Mater., 487, Supplement C, 143-157 (2017)
[6] Cottereau, R., A stochastic-deterministic coupling method for multiscale problems. Application to numerical homogenization of random materials, Procedia IUTAM, 6, 35-43 (2013), IUTAM Symposium on Multiscale Problems in Stochastic Mechanics
[7] Dey, S.; Mukhopadhyay, T.; Khodaparast, H. H.; Adhikari, S., Fuzzy uncertainty propagation in composites using Gram-Schmidt polynomial chaos expansion, Appl. Math. Model., 40, 7, 4412-4428 (2016) · Zbl 1459.74041
[8] Hiriyur, B.; Waisman, H.; Deodatis, G., Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM, Internat. J. Numer. Methods Engrg., 88, 3, 257-278 (2011) · Zbl 1242.74125
[9] Leclerc, W.; Karamian-Surville, P.; Vivet, A., An efficient stochastic and double-scale model to evaluate the effective elastic properties of 2D overlapping random fibre composites, Comput. Mater. Sci., 69, 481-493 (2013)
[10] Lucas, V.; Golinval, J.-C.; Paquay, S.; Nguyen, V.-D.; Noels, L.; Wu, L., A stochastic computational multiscale approach; Application to MEMS resonators, Comput. Methods Appl. Mech. Engrg., 294, 141-167 (2015) · Zbl 1423.74198
[11] Ma, J.; Sahraee, S.; Wriggers, P.; De Lorenzis, L., Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure, Comput. Mech., 55, 5, 819-835 (2015) · Zbl 1329.74243
[12] Pivovarov, D.; Steinmann, P., Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties, Comput. Mech., 57, 1, 123-147 (2016) · Zbl 1381.74179
[13] Savvas, D.; Stefanou, G.; Papadrakakis, M.; Deodatis, G., Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM, Comput. Mech., 54, 5, 1221-1235 (2014) · Zbl 1311.74008
[14] Stefanou, G., Simulation of heterogeneous two-phase media using random fields and level sets, Front. Struct. Civ. Eng., 9, 2, 114-120 (2014)
[15] Xu, X. F., A multiscale stochastic finite element method on elliptic problems involving uncertainties, Comput. Methods Appl. Mech. Engrg., 196, 2723-2736 (2007) · Zbl 1173.74449
[16] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2003), Dover Publications, inc: Dover Publications, inc New York
[17] Adhikari, S., A reduced spectral function approach for the stochastic finite element analysis, Comput. Methods Appl. Mech. Engrg., 200, 21-22, 1804-1821 (2011) · Zbl 1228.74075
[18] Babuska, I.; Chatzipantelidis, P., On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 191, 37-38, 4093-4122 (2002) · Zbl 1019.65010
[19] Babuska, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007) · Zbl 1151.65008
[20] Hadigol, M.; Doostan, A.; Matthies, H. G.; Niekamp, R., Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach, Comput. Methods Appl. Mech. Engrg., 274, 103-124 (2014) · Zbl 1296.65158
[21] Kucerova, A.; Sykora, J.; Rosic, B.; Matthies, H. G., Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials, J. Comput. Appl. Math., 236, 18, 4862-4872 (2012), FEMTEC 2011: 3rd International Conference on Computational Methods in Engineering and Science, May 9-13, 2011 · Zbl 1426.76633
[22] Lang, C.; Sharma, A.; Doostan, A.; Maute, K., Heaviside enriched extended stochastic FEM for problems with uncertain material interfaces, Comput. Mech., 56, 5, 753-767 (2015) · Zbl 1329.74279
[23] Ma, X.; Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 8, 3084-3113 (2009) · Zbl 1161.65006
[24] Mohan, P. S.; Nair, P. B.; Keane, A. J., Multi-element stochastic reduced basis methods, Comput. Methods Appl. Mech. Engrg., 197, 17-18, 1495-1506 (2008) · Zbl 1194.65025
[25] Nouy, A.; Clement, A., eXtended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces, Internat. J. Numer. Methods Engrg., 83, 10, 1312-1344 (2010) · Zbl 1202.74182
[26] Ullmann, E.; Elman, H. C.; Ernst, O. G., Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems, SIAM J. Sci. Comput., 34, 2, 659-682 (2012) · Zbl 1251.35200
[27] Sarkar, A.; Benabbou, N.; Ghanem, R., Domain decomposition of stochastic PDEs: Theoretical formulations, Internat. J. Numer. Methods Engrg., 77, 5, 689-701 (2009) · Zbl 1156.74385
[28] Wan, X.; Karniadakis, G. E., An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 2, 617-642 (2005) · Zbl 1078.65008
[29] M.S. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in: American Institute of Aeronautics and Astronautics, 47th AIAA Aerospace Sciences Meeting, 2009, pp. 1-20.
[30] Nair, P. B.; Keane, A. J., Stochastic reduced basis methods, AIAA J., 40, 8, 1653-1664 (2002)
[31] Nouy, A., A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 196, 45-48, 4521-4537 (2007) · Zbl 1173.80311
[32] Nouy, A., Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms, Comput. Methods Appl. Mech. Engrg., 197, 51-52, 4718-4736 (2008) · Zbl 1194.74458
[33] Sachdeva, S. K.; Nair, P. B.; Keane, A. J., Comparative study of projection schemes for stochastic finite element analysis, Comput. Methods Appl. Mech. Engrg., 195, 19-22, 2371-2392 (2006) · Zbl 1142.74047
[34] Falsone, G.; Impollonia, N., A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters, Comput. Methods Appl. Mech. Engrg., 191, 44, 5067-5085 (2002) · Zbl 1042.74050
[35] Pivovarov, D.; Steinmann, P.; Willner, K., Two reduction methods for stochastic FEM based homogenization using global basis functions, Comput. Methods Appl. Mech. Engrg., 332, 488-519 (2018) · Zbl 1440.74436
[36] Wang, Y.; Palacios, R.; Wynn, A., A method for normal-mode-based model reduction in nonlinear dynamics of slender structures, Comput. Struct., 159, 26-40 (2015)
[37] Brands, B.; Mergheim, J.; Steinmann, P., Reduced-order modelling for linear heat conduction with parametrised moving heat sources, GAMM-Mitt., 39, 2, 170-188 (2016) · Zbl 1397.74050
[38] Soldner, D.; Brands, B.; Zabihyan, R.; Steinmann, P.; Mergheim, J., A numerical study of different projection-based model reduction techniques applied to computational homogenisation, Comput. Mech., 60, 4, 613-625 (2017) · Zbl 1386.74142
[39] Pinnau, R., Model reduction via proper orthogonal decomposition, (Model Order Reduction: Theory, Research Aspects and Applications, vol. 13 (2008), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 95-109 · Zbl 1154.93012
[40] Fink, D.; Wagner, A.; Ehlers, W., Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue, J. Comput. Sci., 24, 101-115 (2018)
[41] de Pando, M. F.; Schmid, P. J.; Sipp, D., Nonlinear model-order reduction for compressible flow solvers using the discrete empirical interpolation method, J. Comput. Phys., 324, 194-209 (2016) · Zbl 1371.76103
[42] Radermacher, A.; Reese, S., Model reduction in elastoplasticity: proper orthogonal decomposition combined with adaptive sub-structuring, Comput. Mech., 54, 3, 677-687 (2014) · Zbl 1311.74026
[43] Yvonnet, J.; He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 1, 341-368 (2007) · Zbl 1163.74048
[44] Feeny, B.; Kappagantu, R., On the physical interpretation of proper orthogonal modes in vibrations, J. Sound Vib., 211, 4, 607-616 (1998)
[45] Kerschen, G.; Golinval, J., Physical interpretation of the proper orthogonal modes using the singular value decomposition, J. Sound Vib., 249, 5, 849-865 (2002) · Zbl 1237.70041
[46] Rutzmoser, J.; Rixen, D.; Tiso, P.; Jain, S., Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics, Comput. Struct., 192, 196-209 (2017)
[47] Ryckelynck, D., A priori hyperreduction method: an adaptive approach, J. Comput. Phys., 202, 1, 346-366 (2005) · Zbl 1288.65178
[48] Ryckelynck, D.; Chinesta, F.; Cueto, E.; Ammar, A., On thea priori model reduction: Overview and recent developments, Arch. Comput. Methods Eng., 13, 1, 91-128 (2006) · Zbl 1142.76462
[49] Chinesta, F.; Ladeveze, P.; Cueto, E., A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., 18, 4, 395 (2011)
[50] Le Bris, C.; Lelièvre, T.; Maday, Y., Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations, Constr. Approx., 30, 3, 621 (2009) · Zbl 1191.65156
[51] Ladeveze, P.; Passieux, J.-C.; Neron, D., The LATIN multiscale computational method and the proper generalized decomposition, Comput. Methods Appl. Mech. Engrg., 199, 21, 1287-1296 (2010), Multiscale Models and Mathematical Aspects in Solid and Fluid Mechanics · Zbl 1227.74111
[52] Paillet, C.; Neron, D.; Ladeveze, P., A door to model reduction in high-dimensional parameter space, C. R. Mec., 346, 7, 524-531 (2018), Model reduction, data-based and advanced discretization in computational mechanics / Réduction de modèles, données et techniques de discrétisation avancées en mécanique numérique
[53] Huerta, A.; Nadal, E.; Chinesta, F., Proper generalized decomposition solutions within a domain decomposition strategy, Internat. J. Numer. Methods Engrg., 113, 13, 1972-1994 (2017), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5729 · Zbl 07868561
[54] Nouy, A., A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Engrg., 199, 23, 1603-1626 (2010) · Zbl 1231.76219
[55] Gonzalez, D.; Ammar, A.; Chinesta, F.; Cueto, E., Recent advances on the use of separated representations, Internat. J. Numer. Methods Engrg., 81, 5, 637-659 (2009), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2710 · Zbl 1183.65168
[56] Blatman, G.; Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys., 230, 6, 2345-2367 (2011) · Zbl 1210.65019
[57] Marelli, S.; Sudret, B., An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis, Struct. Saf., 75, 67-74 (2018)
[58] Besselink, B.; Tabak, U.; Lutowska, A.; van de Wouw, N.; Nijmeijer, H.; Rixen, D.; Hochstenbach, M.; Schilders, W., A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control, J. Sound Vib., 332, 19, 4403-4422 (2013)
[59] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction, UNITEXT (2015), Springer International Publishing
[60] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 4, 483-531 (2015), arXiv:https://doi.org/10.1137/130932715 · Zbl 1339.37089
[61] Luelf, F. A.; Tran, D.-M.; Ohayon, R., Reduced bases for nonlinear structural dynamic systems: A comparative study, J. Sound Vib., 332, 15, 3897-3921 (2013)
[62] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010), arXiv:https://doi.org/10.1137/090766498 · Zbl 1217.65169
[63] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci., Paris I, 339, 9, 667-672 (2004) · Zbl 1061.65118
[64] Negri, F., Efficient Reduction Techniques for the Simulation and Optimization of Parametrized Systems Analysis and Applications, 223 (2015), Ecole Polytechnique Federale de Lausanne: Ecole Polytechnique Federale de Lausanne Lausanne, (Ph.D. thesis)
[65] Negri, F.; Manzoni, A.; Amsallem, D., Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303, 431-454 (2015) · Zbl 1349.65154
[66] Tiso, P.; Rixen, D. J., Discrete empirical interpolation method for finite element structural dynamics, (Kerschen, G.; Adams, D.; Carrella, A., Topics in Nonlinear Dynamics, vol. 1 (2013), Springer New York: Springer New York New York, NY), 203-212
[67] Paul-Dubois-Taine, A.; Amsallem, D., An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models, Internat. J. Numer. Methods Engrg., 102, 5, 1262-1292 (2014), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4759 · Zbl 1352.65217
[68] Peherstorfer, B.; Butnaru, D.; Willcox, K.; Bungartz, H., Localized discrete empirical interpolation method, SIAM J. Sci. Comput., 36, 1, A168-A192 (2014), arXiv:https://doi.org/10.1137/130924408 · Zbl 1290.65080
[69] Radermacher, A.; Reese, S., POD-based model reduction with empirical interpolation applied to nonlinear elasticity, Internat. J. Numer. Methods Engrg., 107, 6, 477-495 (2015), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5177 · Zbl 1352.74048
[70] Hinze, M.; Kunkel, M., Discrete empirical interpolation in POD model order reduction of drift-diffusion equations in electrical networks, (Scientific Computing in Electrical Engineering SCEE 2010 (2012), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 423-431 · Zbl 1247.78039
[71] Ghavamian, F.; Tiso, P.; Simone, A., POD-DEIM model order reduction for strain-softening viscoplasticity, Comput. Methods Appl. Mech. Engrg., 317, 458-479 (2017) · Zbl 1439.74073
[72] Cosimo, A.; Cardona, A.; Idelsohn, S., Improving the k-compressibility of hyper reduced order models with moving sources: Applications to welding and phase change problems, Comput. Methods Appl. Mech. Engrg., 274, 237-263 (2014) · Zbl 1296.80009
[73] Everson, R.; Sirovich, L., Karhunen-Loeve procedure for gappy data, J. Opt. Soc. Amer. A, 12, 1657-1664 (1995)
[74] Zahr Matthew, J.; Avery, P.; Farhat, C., A multilevel projection-based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics, Internat. J. Numer. Methods Engrg., 112, 8, 855-881 (2017), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5535 · Zbl 07867235
[75] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[76] Carlberg, K.; Barone, M.; Antil, H., Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330, 693-734 (2017) · Zbl 1378.65145
[77] Pivovarov, D.; Steinmann, P., On stochastic FEM based computational homogenization of magneto-active heterogeneous materials with random microstructure, Comput. Mech., 58, 6, 981-1002 (2016) · Zbl 1398.74392
[78] Deb, M. K.; Babuska, I. M.; Oden, J., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190, 48, 6359-6372 (2001) · Zbl 1075.65006
[79] Papoulis, A.; Pillai, S. U., Probability, Random Variables and Stochastic Processes (2001), McGraw-Hill Education
[80] Shynk, J. J., Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications (2012), Wiley-Interscience · Zbl 1275.60002
[81] Chatzigeorgiou, G.; Javili, A.; Steinmann, P., Unified magnetomechanical homogenization framework with application to magnetorheological elastomers, Math. Mech. Solids, 2012, 193-211 (2013) · Zbl 1355.74065
[82] Javili, A.; Chatzigeorgiou, G.; Steinmann, P., Computational homogenization in magneto-mechanics, Int. J. Solids Struct., 50, 25-26, 4197-4216 (2013)
[83] Babuska, I.; Tempone, R.; Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 2, 800-825 (2004), arXiv:http://dx.doi.org/10.1137/S0036142902418680 · Zbl 1080.65003
[84] Babuska, I.; Tempone, R.; Zouraris, G. E., Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput. Methods Appl. Mech. Engrg., 194, 12-16, 1251-1294 (2005), Special Issue on Computational Methods in Stochastic Mechanics and Reliability Analysis · Zbl 1087.65004
[85] Pivovarov, D.; Oberleiter, T.; Willner, K.; Steinmann, P., Fuzzy-stochastic FEM-based homogenization framework for materials with polymorphic uncertainties in the microstructure, Internat. J. Numer. Methods Engrg., 116, 9, 633-660 (2018) · Zbl 07865045
[86] Pivovarov, D.; Zabihyan, R.; Mergheim, J.; Willner, K.; Steinmann, P., On periodic boundary conditions and ergodicity in computational homogenization of heterogeneous materials with random microstructure, Comput. Methods Appl. Mech. Engrg., 357, Article 112563 pp. (2019) · Zbl 1442.74191
[87] Rosic, B. V., Variational Formulations and Functional Approximation Algorithms in Stochastic Plasticity of Materials (2012), Faculty of Engineering, Kragujevac, (Ph.D. thesis)
[88] Kaminski, M., Homogenization with uncertainty in Poisson ratio for polymers with rubber particles, Composites B, 69, Supplement C, 267-277 (2015)
[89] Zabihyan, R.; Mergheim, J.; Javili, A.; Steinmann, P., Aspects of computational homogenization in magneto-mechanics: Boundary conditions, RVE size and microstructure composition, Int. J. Solids Struct., 130-131, 105-121 (2018)
[90] Boyaval, S.; Le Bris, C.; Lelievre, T.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Reduced basis techniques for stochastic problems, Arch. Comput. Methods Eng., 17, 4, 435-454 (2010) · Zbl 1269.65005
[91] Nouy, A.; Clement, A.; Schoefs, F.; Moes, N., An extended stochastic finite element method for solving stochastic partial differential equations on random domains, Comput. Methods Appl. Mech. Engrg., 197, 51-52, 4663-4682 (2008) · Zbl 1194.74457
[92] Hill, R., The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65, 5, 349-354 (1952)
[93] Wu, L.; Nguyen, V.-D.; Adam, L.; Noels, L., An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites, Comput. Methods Appl. Mech. Engrg., 348, 97-138 (2019), URL http://www.sciencedirect.com/science/article/pii/S0045782519300210 · Zbl 1440.74341
[94] Loehnert, S.; Wriggers, P., Homogenisation of microheterogeneous materials considering interfacial delemination at finite strains, Techn. Mech., 23, 167-177 (2003)
[95] Peric, D.; de Souza Neto, E. A.; Feijoo, R. A.; Partovi, M.; Molina, A. J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation, Internat. J. Numer. Methods Engrg., 87, 1-5, 149-170 (2011), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.3014. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3014 · Zbl 1242.74087
[96] Savvas, D.; Stefanou, G.; Papadrakakis, M., Determination of RVE size for random composites with local volume fraction variation, Comput. Methods Appl. Mech. Engrg., 305, 340-358 (2016) · Zbl 1425.74039
[97] Khisaeva, Z. F.; Ostoja-Starzewski, M., On the size of RVE in finite elasticity of random composites, J. Elasticity, 85, 2, 153 (2006), URL https://doi.org/10.1007/s10659-006-9076-y · Zbl 1104.74008
[98] Ostoja-Starzewski, M., Material spatial randomness: From statistical to representative volume element, Probab. Eng. Mech., 21, 2, 112-132 (2006), URL http://www.sciencedirect.com/science/article/pii/S0266892005000433
[99] Trovalusci, P.; Ostoja-Starzewski, M.; Bellis, M. L.D.; Murrali, A., Scale-dependent homogenization of random composites as micropolar continua, Eur. J. Mech. A Solids, 49, 396-407 (2015), URL http://www.sciencedirect.com/science/article/pii/S0997753814001223
[100] Castaneda, P. P.; Galipeau, E., Homogenization-based constitutive models for magnetorheological elastomers at finite strain, J. Mech. Phys. Solids, 59, 2, 194-215 (2011) · Zbl 1270.74075
[101] Pivovarov, D.; Hahn, V.; Steinmann, P.; Willner, K.; Leyendecker, S., Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure, Comput. Mech., 1-20 (2019)
[102] Scheunemann, L.; Schroeder, J.; Balzani, D.; Brands, D., Construction of statistically similar representative volume elements — Comparative study regarding different statistical descriptors, Procedia Eng., 81, 1360-1365 (2014), 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, Japan
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.