×

Proper generalized decomposition solutions within a domain decomposition strategy. (English) Zbl 07868561

Summary: Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The classical difficulties associated to the combination of layered domains with arbitrarily oriented midsurfaces, which may require in-plane-out-of-plane techniques, are now dismissed. More generally, solutions on large domains can now be confronted within a domain decomposition approach. This is done with a reduced cost in the offline phase because the proper generalized decomposition gives an explicit description of the solution in each subdomain in terms of the solution at the interface. Thus, the evaluation of the approximation in each subdomain is a simple function evaluation given the interface values (and the other problem parameters). The interface solution can be characterized by any a priori user-defined approximation. Here, for illustration purposes, hierarchical polynomials are used. The repetitiveness of the subdomains is exploited to reduce drastically the offline computational effort. The online phase requires solving a nonlinear problem to determine all the interface solutions. However, this problem only has degrees of freedom on the interfaces and the Jacobian matrix is explicitly determined. Obviously, other parameters characterizing the solution (material constants, external loads, and geometry) can also be incorporated in the explicit description of the solution.
{Copyright © 2017 John Wiley & Sons, Ltd.}

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
74Sxx Numerical and other methods in solid mechanics
76Mxx Basic methods in fluid mechanics
Full Text: DOI

References:

[1] AmmarA, MokdadB, ChinestaF, KeuningsR. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non‐Newtonian Fluid Mech. 2006;139:153‐176. · Zbl 1195.76337
[2] ChinestaF, LeygueA, BordeuF, et al. PGD‐based computational vademecum for efficient design, optimization and control. Arch Comput Method Eng. 2013;20:31‐59. · Zbl 1354.65100
[3] ChinestaF, CuetoE, HuertaA. PGD for solving multidimensional and parametric models. Separated Representations and PGD‐Based Model Reduction. CISM International Centre for Mechanical Sciences: Courses and Lectures. Vol. 554. Vienna, Austria: Springer, Vienna; 2014. · Zbl 1300.93001
[4] ChinestaF, KeuningsR, LeygueA. The Proper Generalized Decomposition for Advanced Numerical Simulations. A Primer. SpringerBriefs in Applied Sciences and Technology. Cham, Switzerland: Springer; 2014. · Zbl 1287.65001
[5] GonzalezD, AmmarA, ChinestaF, CuetoE. Recent advances on the use of separated representations. Int J Numer Methods Eng. 2010;81(5):637‐659. · Zbl 1183.65168
[6] GhnatiosC, ChinestaF, BinetruyC. 3D modeling of squeeze flows occurring in composite laminates. Int J Mater Form. 2015;8(1):73‐83.
[7] BognetB, BordeuF, ChinestaF, LeygueA, PoitouA. Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng. 2012;201‐204:1‐12. · Zbl 1239.74045
[8] BognetB, LeygueA, ChinestaF. Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci. 2014;1(1):4.
[9] IbáñezR, Abisset‐ChavanneE, ChinestaF, HuertaA. Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations. Int J Mater Form. 2017;10(5):653‐669.
[10] QuarteroniA, ValliA. Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation.New York: The Clarendon Press, Oxford University Press, Oxford Science Publications; 1999. · Zbl 0931.65118
[11] ToselliA, WidlundO. Domain Decomposition Methods ‐ Algorithms and Theory. Springer Series in Computational Mathematics. Vol. 34. Berlin:Springer‐Verlag; 2005. · Zbl 1069.65138
[12] DoleanV, JolivetP, NatafF. An Introduction to Domain Decomposition Methods. Algorithms, Theory, and Parallel Implementation. Philadelphia, PA:Society for Industrial and Applied Mathematics (SIAM); 2015. · Zbl 1364.65277
[13] NazeerSM, BordeuF, LeygueA, ChinestaF. Arlequin based PGD domain decomposition. Comput Mech. 2014;54(5):1175‐1190. · Zbl 1311.74151
[14] KrauseRH, WohlmuthBI. A Dirichlet‐Neumann type algorithm for contact problems with friction. Comput Vis Sci. 2002;5(3):139‐148. · Zbl 1099.74536
[15] FarhatC, RouxF‐X. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng. 1991;32(6):1205‐1227. · Zbl 0758.65075
[16] BrezziF, MariniLD. A three‐field domain decomposition method. Contemporary Mathematics. Vol. 157. Providence, RI: American Mathematical Society; 1994:27‐34. · Zbl 0801.65116
[17] NitscheJA. Über ein variationsprinzip zur lösung von Dirichlet‐problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abh Math Sem Univ Hamburg. 1971;36:9‐15. · Zbl 0229.65079
[18] FreudJ, StenbergR. On weakly imposed boundary conditions for second order problems. Paper presented at: Proceedings of the International Conference on Finite Elements in Fluids ‐ New Trends and Applications; 1995; Venice, Italy.
[19] StenbergR. On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math. 1995;63(1‐3):139‐148. · Zbl 0856.65130
[20] BeckerR, HansboP, StenbergR. A finite element method for domain decomposition with non‐matching grids. ESAIM‐Math Model Numer Anal. 2003;37(2):209‐225. · Zbl 1047.65099
[21] IapichinoL, QuarteroniA, RozzaG. A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput Methods Appl Mech Eng. 2012;221‐222:63‐82. · Zbl 1253.76139
[22] EftangJL, PateraAT. Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. Int J Numer Methods Eng. 2013;96(5):269‐302. · Zbl 1352.65495
[23] EftangJL, PateraAT. A port‐reduced static condensation reduced basis element method for large component‐synthesized structures: approximation and a posteriori error estimation. Adv Model Simul Eng Sci. 2014;1(1):3. https://doi.org/10.1186/2213-7467-1-3 · doi:10.1186/2213-7467-1-3
[24] VallaghéS, PateraAT. The static condensation reduced basis element method for a mixed‐mean conjugate heat exchanger model. SIAM J Sci Comput. 2014;36(3):B294‐B320. · Zbl 1298.80016
[25] MartiniI, RozzaG, HaasdonkB. Reduced basis approximation and a‐posteriori error estimation for the coupled Stokes‐Darcy system. Adv Comput Math. 2015;41(5):1131‐1157. · Zbl 1336.76021
[26] SmetanaK. A new certification framework for the port reduced static condensation reduced basis element method. Comput Methods Appl Mech Eng. 2015;283:352‐383. · Zbl 1425.65179
[27] SmetanaK, PateraAT. Optimal local approximation spaces for component‐based static condensation procedures. SIAM J Sci Comput. 2016;38(5):A3318‐A3356. · Zbl 1457.65216
[28] IapichinoL, QuarteroniA, RozzaG. Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Comput Math Appl. 2016;71(1):408‐430. · Zbl 1443.65340
[29] MadayY, RønquistEM. A reduced‐basis element method. J Sci Comput. 2002;17(1‐4):447‐459. · Zbl 1014.65119
[30] HuynhDBP, KnezevicDJ, PateraAT. A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM‐Math Model Numer Anal. 2013;47(1):213‐251. · Zbl 1276.65082
[31] AmmarA, HuertaA, ChinestaF, CuetoE, LeygueA. Parametric solutions involving geometry: a step towards efficient shape optimization. Comput Methods Appl Mech Eng. 2014;268:178‐193. · Zbl 1295.74080
[32] ZlotnikS, DíezP, ModestoD, HuertaA. Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. Int J Numer Methods Eng. 2015;103(10):737‐758. · Zbl 1352.65450
[33] MontlaurA, Fernández‐MéndezS, HuertaA. Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations. Int J Numer Methods Fluids. 2008;57(9):1071‐1092. · Zbl 1338.76062
[34] CiarletPG. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Vol. 40. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); 2002. Reprint of the 1978 original [North Holland, Amsterdam]. · Zbl 0999.65129
[35] SzabóB, BabuškaI. Finite Element Analysis: Formulation, Verification, and Validation. Wiley Series in Computational Mathematics. Chichester.John Wiley & Sons, Inc; 2011. · Zbl 1410.65003
[36] PateraAT, RozzaG. Reduced Basis Approximation and A‐Posteriori Error Estimation for Parametrized Partial Differential Equations. Cambridge, MA: MIT Pappalardo Graduate Monographs in Mechanical Engineering: Massachusetts Institute of Technology; 2007.
[37] RozzaG. Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications. Separated Representations and PGD‐Based Model Reduction. CISM International Centre for Mechanical Sciences: Courses and Lectures. Vol. 554. Vienna: Springer; 2014:153‐227. · Zbl 1312.93027
[38] AmmarA, ChinestaF, DiezP, HuertaA. An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng. 2010;199(25‐28):1872‐1880. · Zbl 1231.74503
[39] ZlotnikS, DiezP, GonzálezD, CuetoE, HuertaA. Effect of the separated approximation of input data in the accuracy of the resulting PGD solution. Adv Model Simul Eng Sci. 2015;2(28). https://doi.org/10.1186/s40323-015-0052-6 · doi:10.1186/s40323-015-0052-6
[40] MadayY, RønquistEM. The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput. 2004;26(1):240‐258. · Zbl 1077.65120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.