×

High-performance model reduction techniques in computational multiscale homogenization. (English) Zbl 1423.74785

Summary: A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version – that accounts for the elastic/inelastic character of the solution – of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude – as compared with finite element analysis – whereas the maximum error in stresses is less than 10%.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics

Software:

PRMLT

References:

[1] Abdulle, A.; Bai, Y., Adaptive reduced basis finite element heterogeneous multiscale method, Comput. Methods Appl. M., 257, 203-220, (2013) · Zbl 1286.74088
[2] Abdulle, A.; Bai, Y., Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems, J. Comput. Phys., 231, 21, 7014-7036, (2012) · Zbl 1284.65161
[3] An, S.; Kim, T.; James, D., Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph., 27, 5, 165, (2009)
[4] Ashby, M., Physical modelling of materials problems, Mater. Sci. Technol., 8, 2, 102-111, (1992)
[5] P. Astrid, Reduction of process simulation models: a proper orthogonal decomposition approach, Technische Universiteit Eindhoven, 2004.
[6] Astrid, P.; Weiland, S.; Willcox, K.; Backx, T., Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Control, 53, 10, 2237-2251, (2008) · Zbl 1367.93110
[7] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations, C.R. Math., 339, 9, 667-672, (2004) · Zbl 1061.65118
[8] Bishop, C.; en ligne, S. S., Pattern Recognition and Machine Learning, vol. 4, (2006), springer New York · Zbl 1107.68072
[9] H. Bohm, A short introduction to basic aspects of continuum micromechanics. CDL-FMD Report 3, 1998.
[10] S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting, 2007, Arxiv preprint math/0702674.
[11] Boyd, S.; Vandenberghe, L., Convex optimization, (2004), Cambridge Univ Pr · Zbl 1058.90049
[12] T. Bui-Thanh, Model-constrained optimization methods for reduction of parameterized large-scale systems (Ph.D. thesis), Citeseer, 2007.
[13] Bui-Thanh, T.; Willcox, K.; Ghattas, O., Model reduction for large-scale systems with high-dimensional parametric input space, SIAM J. Sci. Comput., 30, 6, 3270-3288, (2008) · Zbl 1196.37127
[14] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 2, 155-181, (2011) · Zbl 1235.74351
[15] K. Carlberg, C. Farhat, A compact proper orthogonal decomposition basis for optimization-oriented reduced-order models. AIAA Paper 5964, 2008, pp. 10-12.
[16] Carlberg, K.; Farhat, C., A low-cost, goal-oriented compact proper orthogonal decomposition basis for model reduction of static systems, Int. J. Numer. Methods Eng., 86, 3, 381-402, (2011) · Zbl 1235.74352
[17] Chaturantabut, S.; Sorensen, D., Application of POD and DEIM on dimension reduction of nonlinear miscible viscous fingering in porous media, Math. Comp. Model. Dyn., 17, 4, 337-353, (2011) · Zbl 1302.76127
[18] Chaturantabut, S.; Sorensen, D., Discrete empirical interpolation for nonlinear model reduction, (Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, (2010), IEEE), 4316-4321
[19] Cook, R., Finite element modeling for stress analysis, (1995), John Wiley and Sons New York · Zbl 0837.73001
[20] G. Couégnat, Approche multiéchelle du comportement mécanique de matériaux composites à renfort tissé (Ph.D. thesis), Université Sciences et Technologies-Bordeaux I, 2008.
[21] Cremonesi, M.; Néron, D.; Guidault, P.-A.; Ladevèze, P., A PGD-based homogenization technique for the resolution of nonlinear multiscale problems, Comput. Methods Appl. Mech. Eng., 267, 275-292, (2013) · Zbl 1286.74084
[22] E. de Souza Neto, R. Feijóo, Variational foundations of multi-scale constitutive models of solid: small and large strain kinematical formulation, LNCC Research & Development Report 16, 2006.
[23] DeVore, R.; Iserles, A.; Suli, E., Foundations of computational mathematics, (2001), Cambridge Univ Pr · Zbl 0962.00005
[24] Drago, A.; Pindera, M., Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures, Compos. Sci. Technol., 67, 6, 1243-1263, (2007)
[25] Dvorak, G.; Wafa, A.; Bahei-El-Din, Y., Implementation of the transformation field analysis for inelastic composite materials, Comput. Mech., 14, 3, 201-228, (1994) · Zbl 0835.73038
[26] Efendiev, Y.; Galvis, J.; Gildin, E., Local-global multiscale model reduction for flows in high-contrast heterogeneous media, J. Comput. Phys., 231, 24, 8100-8113, (2012)
[27] Y. Efendiev, J. Galvis, F. Thomines, A Systematic Coarse-Scale Model Reduction Technique for Parameter-Dependent Flows in Highly Heterogeneous Media and its Applications, 2012. · Zbl 1264.76088
[28] Everson, R.; Sirovich, L., Karhunen-loeve procedure for gappy data, J. Opt. Soc. Am. A, 12, 8, 1657-1664, (1995)
[29] Feyel, F.; Chaboche, J., Fe-2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials, Comput. Methods Appl. Mech. Eng., 183, 3, 309-330, (2000) · Zbl 0993.74062
[30] Fish, J.; Shek, K.; Pandheeradi, M.; Shephard, M., Computational plasticity for composite structures based on mathematical homogenization: theory and practice, Comput. Methods Appl. Mech. Eng., 148, 1-2, 53-73, (1997) · Zbl 0924.73145
[31] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Methods Eng., 81, 12, 1581-1608, (2010) · Zbl 1183.76837
[32] Geers, M.; Kouznetsova, V.; Brekelmans, W., Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182, (2010) · Zbl 1402.74107
[33] Grepl, M.; Maday, Y.; Nguyen, N.; Patera, A., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, Math. Model. Numer. Anal., 41, 3, 575-605, (2007) · Zbl 1142.65078
[34] Gross, D.; Seelig, T., Fracture mechanics: with an introduction to micromechanics, (2011), Springer
[35] J.A. Hernández, J. Oliver, A. Huespe, M. Caicedo, High-performance model reduction procedures in multiscale simulations, Monograph CIMNE (ISBN: 978-84-9939640-6-1), 2012, URL: <http://centrovnet.cimne.upc.edu/cvdata/cntr7/dtos/img/mdia/Downloads/MONOGRAFIA-PUBLICADA.pdf>.
[36] Hoffman, J. D., Numerical methods for engineers and scientists, (2001), Marcel Dekker · Zbl 1068.65001
[37] Hogben, L., Handbook of linear algebra, (2006), Chapman & Hall/CRC
[38] Hu, Y.; Hwang, J.; Perry, S., Handbook of neural network signal processing, J. Acoust. Soc. Am., 111, 2525, (2002)
[39] Kim, T.; James, D., Skipping steps in deformable simulation with online model reduction, (ACM SIGGRAPH Asia 2009 Papers, (2009), ACM), 1-9
[40] V. Kouznetsova, Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials, Technische Universiteit Eindhoven, 2002.
[41] Krysl, P.; Lall, S.; Marsden, J., Dimensional model reduction in non-linear finite element dynamics of solids and structures, Int. J. Numer. Methods Eng., 51, 4, 479-504, (2001) · Zbl 1013.74071
[42] Kunisch, K.; Volkwein, S., Optimal snapshot location for computing pod basis functions, ESAIM: Math. Model. Numer. Anal., 44, 3, 509, (2010) · Zbl 1193.65113
[43] Li, Z.; Wen, B.; Zabaras, N., Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques, Comput. Mater. Sci., 49, 3, 568-581, (2010)
[44] Lovasz, L.; Pelikan, J.; Vesztergombi, K., Discrete mathematics: elementary and beyond, (2003), Springer · Zbl 1059.00001
[45] Lubliner, J., Plasticity theory, (1990), McMillan New York · Zbl 0745.73006
[46] Maday, Y.; Patera, A.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., 124, 1, 70-80, (2002)
[47] Michel, J.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Eng., 172, 1-4, 109-143, (1999) · Zbl 0964.74054
[48] Michel, J.; Suquet, P., Nonuniform transformation field analysis, Int. J. Solids Struct., 40, 25, 6937-6955, (2003) · Zbl 1057.74031
[49] Michel, J.; Suquet, P., Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Comput. Methods Appl. Mech. Eng., 193, 48-51, 5477-5502, (2004) · Zbl 1112.74471
[50] Monteiro, E.; Yvonnet, J.; He, Q., Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction, Comput. Mater. Sci., 42, 4, 704-712, (2008)
[51] Montgomery, D.; Runger, G., Applied statistics and probability for engineers, (2010), Wiley
[52] Nguyen, N., A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales, J. Comput. Phys., 227, 23, 9807-9822, (2008) · Zbl 1155.65391
[53] Nguyen, N.; Patera, A.; Peraire, J., A best points interpolation method for efficient approximation of parametrized functions, Int. J. Numer. Methods Eng., 73, 521-543, (2008) · Zbl 1163.65009
[54] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical mathematics, (2000), Springer New York · Zbl 0943.65001
[55] Roussette, S.; Michel, J.; Suquet, P., Nonuniform transformation field analysis of elastic-viscoplastic composites, Compos. Sci. Technol., 69, 1, 22-27, (2009)
[56] Rozza, G., Reduced basis methods for Stokes equations in domains with non-affine parameter dependence, Comput. Visual. Sci., 12, 1, 23-35, (2009) · Zbl 1522.65225
[57] Ryckelynck, D., A priori hyperreduction method: an adaptive approach, J. Comput. Phys., 202, 1, 346-366, (2005) · Zbl 1288.65178
[58] Ryckelynck, D., Hyper-reduction of mechanical models involving internal variables, Int. J. Numer. Methods Eng., 77, 1, 75-89, (2009) · Zbl 1195.74299
[59] Salomon, D., Data compression: the complete reference, (2004), Springer-Verlag New York Incorporated · Zbl 1049.68061
[60] Simo, J. C.; Hughes, T. J.R., Computational inelasticity, (1998), Springer New York · Zbl 0934.74003
[61] Yvonnet, J.; He, Q., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 1, 341-368, (2007) · Zbl 1163.74048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.