×

Function spaces via fractional Poisson kernel on Carnot groups and applications. (English) Zbl 1539.43001

The methods in this paper give a new characterization of homogeneous Besov and Sobolev spaces in Carnot groups using the fractional heat kernel and Poisson kernel. Moreover, several applications to estimates for commutators of fractional powers of the sub-Laplacian are provided.
Though technically not difficult and the proofs may follow the classical results, these results are worthy to be written up in the literature for future reference.

MSC:

43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A80 Analysis on other specific Lie groups
42B35 Function spaces arising in harmonic analysis

References:

[1] Agrachev, A.; Barilari, D.; Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry (2020), Cambridge: Cambridge University Press, Cambridge · Zbl 1487.53001
[2] P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities, J. Funct. Anal. 278 (2020), Article no. 108459. · Zbl 1504.47069
[3] P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on dirichlet spaces II: BV functions and Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 59 (2020), Article no. 103. · Zbl 1441.31007
[4] P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 60 (2021), Article no. 170. · Zbl 1477.31042
[5] Bahouri, H.; Gallagher, I., Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana, 17, 69-105 (2001) · Zbl 0971.43002 · doi:10.4171/RMI/289
[6] H. Bahouri, C. F. Kammerer and I. Gallagher, Phase-space analysis and pseudodifferential calculus on the Heisenberg group, Astérisque 342 (2012). · Zbl 1246.35003
[7] Balakrishnan, A. V., On the Powers of the Infinitesimal Generators of Groups and Semigroups of Linear Bounded Transformations (1954), Los Angeles, CA: University of Southern California, Los Angeles, CA
[8] Balakrishnan, A. V., Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10, 419-437 (1960) · Zbl 0103.33502 · doi:10.2140/pjm.1960.10.419
[9] Baudoin, F.; Garofalo, N., A note on the boundedness of Riesz transform for some subelliptic operators, Int. Math. Res. Not. IMRN, 2013, 398-421 (2013) · Zbl 1316.58029 · doi:10.1093/imrn/rnr271
[10] Bogdan, K.; Stos, A.; Sztonyk, P., Harnack inequality for stable processes on d-sets, Studia Math., 158, 163-198 (2003) · Zbl 1031.60070 · doi:10.4064/sm158-2-5
[11] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Stratified Lie Groups and Potential Theory for their Sub-Laplacians (2007), Berlin: Springer, Berlin · Zbl 1128.43001
[12] Bui, H-Q; Candy, T., A characterization of the Besov—Lipschitz and Triebel—Lizorkin spaces using Poisson like kernels, Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, 109-141 (2017), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1388.42054
[13] Bui, H-Q; Paluszyński, M.; Taibleson, M. H., A note on the Besov—Lipschitz and Triebel—Lizorkin spaces, Harmonic analysis and operator theory (Caracas, 1994), 95-101 (1995), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0849.46021 · doi:10.1090/conm/189/02258
[14] Bui, H-Q; Paluszynski, M.; Taibleson, M. H., Characterization of the Besov—Lipschitz and Triebel—Lizorkin spaces, The case q < 1, J. Fourier Anal. Appl., 3, 837-846 (1997) · Zbl 0897.42010 · doi:10.1007/BF02656489
[15] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[16] Cao, J.; Grigor’yan, A., Heat kernels and Besov spaces on metric measure spaces, J. Anal. Math., 148, 637-680 (2022) · Zbl 1514.46027 · doi:10.1007/s11854-022-0239-y
[17] Capogna, L.; Danielli, D.; Pauls, S.; Tyson, J., An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (2007), Basel: Birkhäuser, Basel · Zbl 1138.53003
[18] Chanillo, S., A note on commutators, Indiana Univ. Math. J., 31, 7-16 (1982) · Zbl 0523.42015 · doi:10.1512/iumj.1982.31.31002
[19] Christ, M., L^p bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328, 73-81 (1991) · Zbl 0739.42010
[20] Da Lio, F.; Rivière, T., Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 227, 1300-1348 (2011) · Zbl 1219.58004 · doi:10.1016/j.aim.2011.03.011
[21] Da Lio, F.; Rivière, T., Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, 1, 149-190 (2011) · Zbl 1241.35035
[22] Ferrari, F.; Franchi, B., Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z., 279, 435-458 (2015) · Zbl 1314.26008 · doi:10.1007/s00209-014-1376-5
[23] Ferrari, F.; Miranda, M.; Pallara, D.; Pinamonti, A.; Sire, Y., Fractional Laplacians, perimeters and Heat semigroups in Carnot groups, Discrete Contin. Dyn. Syst. Ser. S, 11, 477-491 (2018) · Zbl 1375.35610
[24] Folland, G., A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79, 373-376 (1973) · Zbl 0256.35020 · doi:10.1090/S0002-9904-1973-13171-4
[25] Folland, G., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207 (1975) · Zbl 0312.35026 · doi:10.1007/BF02386204
[26] Folland, G.; Stein, E., Hardy Spaces on Homogeneous Groups (1982), NJ: Princeton University Press, NJ · Zbl 0508.42025
[27] Frank, R. L.; del Mar González, M.; Monticelli, D. D.; Tan, J., An extension problem for the CR fractional Laplacian, Adv. Math., 270, 97-137 (2015) · Zbl 1304.35747 · doi:10.1016/j.aim.2014.09.026
[28] Gallagher, I.; Sire, Y., Besov algebras on Lie groups of polynomial growth, Studia Math., 212, 119-139 (2012) · Zbl 1264.22018 · doi:10.4064/sm212-2-2
[29] Garofalo, N., Some properties of sub-Laplaceans, Electron. J. Differential Equations, 25, 103-131 (2018) · Zbl 1402.35300
[30] Gover, A.; Graham, C. R., CR invariant powers of the sub-Laplacian, J. Reine Angew. Math., 583, 1-27 (2005) · Zbl 1076.53048 · doi:10.1515/crll.2005.2005.583.1
[31] Graham, C. R.; Jenne, R.; Mason, L. J.; Sparling, G. A J., Conformally invariant powers of the Laplacian I. Existence, J. Lond. Math. Soc., 46, 2, 557-565 (1992) · Zbl 0726.53010 · doi:10.1112/jlms/s2-46.3.557
[32] Gromov, M., Carnot—Caratheodory spaces seen from within, Progr. Math., 144, 79-323 (1996) · Zbl 0864.53025
[33] C. Guidi, A. Maalaoui and V. Martino, Palais—Smale sequences for the fractional CR Yamabe functional and multiplicity results, Calc. Var. Partial Differential Equations 57 (2018), Article no. 152. · Zbl 1401.32027
[34] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg—de Vries equation via the contraction principle, Comm. Pure Appl. Math, 46, 527-620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[35] E. Lenzmann and A. Schikorra, Sharp commutator estimates via harmonic extensions, Nonlinear Anal. 193 (2020), Article no. 111375. · Zbl 1436.35012
[36] Maalaoui, A., A note on commutators of the fractional sub-Laplacian on carnot groups, Commun. Pure Appl. Anal., 18, 435-453 (2019) · Zbl 1401.35319 · doi:10.3934/cpaa.2019022
[37] Martini, A., Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal., 260, 2767-2814 (2011) · Zbl 1226.22012 · doi:10.1016/j.jfa.2011.01.008
[38] Montgomery, R., A Tour of Subriemannian Geometries, their Geodesics and Applications (2006), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1044.53022 · doi:10.1090/surv/091
[39] Muramatsu, T., On imbedding theorems for Besov spaces of functions defined in general regions, Publ. Res. Inst. Math. Sci. Kyoto Univ., 7, 261-285 (1971) · Zbl 0236.46034 · doi:10.2977/prims/1195193543
[40] Pinamonti, A.; Speight, G., A measure zero universal differentiability set in the Heisenberg group, Math. Ann., 368, 233-278 (2017) · Zbl 1375.26024 · doi:10.1007/s00208-016-1434-x
[41] Pinamonti, A.; Speight, G.; Zimmerman, S., A C^m Whitney extension theorem for horizontal curves in the Heisemberg group, Trans. Amer. Math. Soc., 371, 8971-8992 (2019) · Zbl 1428.53041 · doi:10.1090/tran/7806
[42] Roncala, L.; Thangavelub, S., Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302, 106-158 (2016) · Zbl 1348.43011 · doi:10.1016/j.aim.2016.07.010
[43] Saka, K., Besov spaces and Sobolev spaces on a nilpotent Lie group, Tohoku Math. J., 31, 2, 383-437 (1979) · Zbl 0429.43004
[44] Schikorra, A., ε-regularity for systems involving non-local, antisymmetric operators, Calc. Var. Partial Differential Equations, 54, 3531 (2015) · Zbl 1348.58009 · doi:10.1007/s00526-015-0913-3
[45] Stein, E., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1995), Princeton, NJ: Princeton University Press, Princeton, NJ
[46] Thangavelu, S., Harmonic Analysis on the Heisenberg Group (1998), Boston, MA: Birkhäuser, Boston, MA · Zbl 0892.43001 · doi:10.1007/978-1-4612-1772-5
[47] Varopoulos, N. Th; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0813.22003
[48] Yosida, K., Functional Analysis (1980), Berlin—Heidelberg: Springer, Berlin—Heidelberg · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.