×

Harnack inequality for fractional sub-Laplacians in Carnot groups. (English) Zbl 1314.26008

An invariant Harnack inequality on Carnot-Carathéodory balls for fractional powers of sub-Laplacians in Carnot groups is derived and proved using the abstract formulation technique introduced by L. Caffarelli and L. Silvestre [Commun. Partial Differ. Equations 32, No. 8, 1245–1260 (2007; Zbl 1143.26002)]. Furthermore, an explicit Poisson kernel for a class of degenerate sub-elliptic equations in product-type Carnot groups are similarly derived and proved.

MSC:

26A33 Fractional derivatives and integrals
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.

Citations:

Zbl 1143.26002

References:

[1] Applebaum, D.: Lévy Processes and Stochastic Calculus. Volume 116 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2009) · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[2] Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123(1), 43-80 (1997) · Zbl 0870.31009
[3] Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007) · Zbl 1128.43001
[4] Bony, J.-M., Courrège, P., Priouret, P.: Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble), 18(fasc. 2):369-521 (1969), 1968 · Zbl 0181.11704
[5] Bourbaki, N.: Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie. Actualités Sci. Ind. No. 1285. Hermann, Paris (1960) · Zbl 0199.35203
[6] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32(7-9), 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[7] Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425-461 (2008) · Zbl 1148.35097 · doi:10.1007/s00222-007-0086-6
[8] Calderón, A.-P.: Inequalities for the maximal function relative to a metric. Studia Math. 57(3), 297-306 (1976) · Zbl 0341.44007
[9] Capogna, L., Danielli, D., Garofalo, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Commun. Anal. Geom. 2(2), 203-215 (1994) · Zbl 0864.46018
[10] Chang, S.-Y.A., del Mar González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410-1432 (2011) · Zbl 1214.26005 · doi:10.1016/j.aim.2010.07.016
[11] Courrège, P.: Sur la forme intégro-différentielle des opérateurs de \[\mathbf{C}^\infty_k\] Ck∞ dans \[\mathbf{C}C\] satisfaisant au principe du maximum. In Séminaire de Théorie du Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny, 1965/66, Tome 10, No. 1, pages 1-38. Secrétariat mathématique, Paris, 1967 · Zbl 0880.35032
[12] Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77-116 (1982) · Zbl 0498.35042 · doi:10.1080/03605308208820218
[13] Ferrari, F., Franchi, B.: A local doubling formula for the harmonic measure associated with subelliptic operators and applications. Communs. Part. Differ. Equ. 28(1-2), 1-60 (2003) · Zbl 1094.35035 · doi:10.1081/PDE-120019372
[14] Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161-207 (1975) · Zbl 0312.35026 · doi:10.1007/BF02386204
[15] Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups, Volume 28 of Mathematical Notes. Princeton University Press, Princeton, NJ (1982) · Zbl 0508.42025
[16] Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(4), 523-541 (1983) · Zbl 0552.35032
[17] Franchi, B., Serapioni, R.: Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14(4), 527-568 (1987) · Zbl 0685.35046
[18] Franchi, B., Serapioni, R., Cassano, F.S.: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22(4), 859-890 (1996) · Zbl 0876.49014
[19] Franchi, B., Serapioni, R., Cassano, F.S.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421-466 (2003) · Zbl 1064.49033 · doi:10.1007/BF02922053
[20] Franchi, B., Serapioni, R., Cassano, F.S.: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Commun. Anal. Geom. 11(5), 909-944 (2003) · Zbl 1077.22008 · doi:10.4310/CAG.2003.v11.n5.a4
[21] Frank, R.L., del Mar González, M., Monticelli, D.D., Tan, J.: An extension problem for the cr fractional laplacian. arXiv:1312.3381 (2013) · Zbl 1304.35747
[22] Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081-1144 (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[23] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980. Corrected and enlarged edition edited by Alan Jeffrey, Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin], Translated from the Russian · Zbl 0521.33001
[24] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[25] Hunt, G.A.: Semi-groups of measures on Lie groups. Trans. Am. Math. Soc. 81, 264-293 (1956) · Zbl 0073.12402 · doi:10.1090/S0002-9947-1956-0079232-9
[26] Niels, J.: Pseudo differential operators and Markov processes: Markov processes and applications, vol. 3. Imperial College Press, London (2005) · Zbl 1076.60003
[27] Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften (1972), Band 180 · Zbl 0253.31001
[28] Lévy, P.: Sur les intégrales dont les éléments sont des variables aléatoires indépendantes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 3(3-4), 337-366 (1934) · JFM 60.1157.01
[29] Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften (1972), Band 181 · Zbl 0227.35001
[30] Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoamericana 8(3), 367-439 (1992) · Zbl 0804.35015 · doi:10.4171/RMI/129
[31] Magnani, V.: Differentiability and area formula on stratified Lie groups. Houston J. Math. 27(2), 297-323 (2001) · Zbl 0983.22009
[32] Masuda, K.: Anti-locality of the one-half power of elliptic differential operators. Publ. Res. Inst. Math. Sci. 8, 207-210 (1972) · Zbl 0245.35026 · doi:10.2977/prims/1195193233
[33] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207-226 (1972) · Zbl 0236.26016 · doi:10.1090/S0002-9947-1972-0293384-6
[34] Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842-1864 (2009) · Zbl 1163.35019 · doi:10.1016/j.jfa.2009.01.020
[35] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III (1993) · Zbl 0821.42001
[36] Stinga, P.R., Torrea, J.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Part. Differ. Equ. 35(11), 2092-2122 (2010) · Zbl 1209.26013 · doi:10.1080/03605301003735680
[37] Stinga, P.R., Zhang, C.: Harnack’s inequality for fractional nonlocal equations. Discrete Contin. Dyn. Syst. 33(7), 3153-3170 (2013) · Zbl 1274.35402 · doi:10.3934/dcds.2013.33.3153
[38] Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944) · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.