×

The planar Busemann-Petty centroid inequality and its stability. (English) Zbl 1335.52022

Summary: In [Int. Math. Res. Not. 2012, No. 10, 2289–2320 (2012; Zbl 1250.52009)], A. Stancu introduced a family of centro-affine normal flows, \( p\)-flows, for \( 1\leq p<\infty\). Here we investigate the asymptotic behavior of the planar \( p\)-flow for \( p=\infty \), in the class of smooth, origin-symmetric convex bodies. First, we prove that the \( \infty \)-flow evolves appropriately normalized origin-symmetric solutions to the unit disk in the Hausdorff metric, modulo \(\mathrm{SL}(2)\). Second, using the \( \infty \)-flow and a Harnack estimate for this flow, we prove a stability version of the planar Busemann-Petty centroid inequality in the Banach-Mazur distance. Third, we prove that the convergence of normalized solutions in the Hausdorff metric can be improved to convergence in the \( \mathcal {C}^{\infty }\) topology.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
52A10 Convex sets in \(2\) dimensions (including convex curves)
35K55 Nonlinear parabolic equations
53A15 Affine differential geometry

Citations:

Zbl 1250.52009

References:

[1] [RS] R. Alessandroni, Evolution of hypersurfaces by curvature functions, Ph.D. Thesis, Universit\'a degli studi di Roma “Tor Vergata” (2008), http://art.torvergata.it/bitstream/2108 /661/1/Thesis.pdf.
[2] Alessandroni, Roberta; Sinestrari, Carlo, Evolution of hypersurfaces by powers of the scalar curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9, 3, 541-571 (2010) · Zbl 1248.53047
[3] Andrews, Ben, Harnack inequalities for evolving hypersurfaces, Math. Z., 217, 2, 179-197 (1994) · Zbl 0807.53044 · doi:10.1007/BF02571941
[4] Andrews, Ben, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., 43, 2, 207-230 (1996) · Zbl 0858.53005
[5] Andrews, Ben, Gauss curvature flow: the fate of the rolling stones, Invent. Math., 138, 1, 151-161 (1999) · Zbl 0936.35080 · doi:10.1007/s002220050344
[6] Andrews, Ben, The affine curve-lengthening flow, J. Reine Angew. Math., 506, 43-83 (1999) · Zbl 0948.53039 · doi:10.1515/crll.1999.008
[7] Andrews, Ben, Motion of hypersurfaces by Gauss curvature, Pacific J. Math., 195, 1, 1-34 (2000) · Zbl 1028.53072 · doi:10.2140/pjm.2000.195.1
[8] Andrews, Ben, Singularities in crystalline curvature flows, Asian J. Math., 6, 1, 101-121 (2002) · Zbl 1025.53038
[9] Andrews, Ben; McCoy, James, Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature, Trans. Amer. Math. Soc., 364, 7, 3427-3447 (2012) · Zbl 1277.53061 · doi:10.1090/S0002-9947-2012-05375-X
[10] Andrews, Ben; Chen, Xuzhong, Surfaces moving by powers of Gauss curvature, Pure Appl. Math. Q., 8, 4, 825-834 (2012) · Zbl 1263.53058 · doi:10.4310/PAMQ.2012.v8.n4.a1
[11] [BX1] B. Andrews and X. Chen, Curvature flow in hyperbolic spaces, J. Reine Angew. Math. (to appear), http://maths-people.anu.edu.au/ andrews/hyperbolic.pdf. · Zbl 1371.53060
[12] [BW1] W. Blaschke, \`“Uber affine Geometrie I: Isoperimetrische Eigenschaften von Ellipse und Ellipsoid, Ber. Verh. S\'”achs. Akad. Leipzig, Math.-Phys. Kl. 68 (1916), 217-39. · JFM 46.1111.02
[13] [BW] W. Blaschke, Affine Geometrie IX: Verschiedene Bemerkungen und Aufgaben, Ber. Verh. S\"achs. Akad. Leipzig, Math.-Phys. Kl. 69 (1917), 412-420. · JFM 46.1113.02
[14] Ball, Keith M.; B{\`“o}r{\'”o}czky, K{\'a}roly J., Stability of the Pr\'ekopa-Leindler inequality, Mathematika, 56, 2, 339-356 (2010) · Zbl 1205.39024 · doi:10.1112/S002557931000063X
[15] Ball, Keith M.; B{\`“o}r{\'”o}czky, K{\'a}roly J., Stability of some versions of the Pr\'ekopa-Leindler inequality, Monatsh. Math., 163, 1, 1-14 (2011) · Zbl 1217.60014 · doi:10.1007/s00605-010-0222-z
[16] Barthe, Franck; B{\`“o}r{\'”o}czky, K{\'a}roly J.; Fradelizi, Matthieu, Stability of the functional forms of the Blaschke-Santal\'o inequality, Monatsh. Math., 173, 2, 135-159 (2014) · Zbl 1288.52003 · doi:10.1007/s00605-013-0499-9
[17] B{\`“o}r{\'”o}czky, K{\'a}roly J.; Hug, Daniel, Stability of the reverse Blaschke-Santal\'o inequality for zonoids and applications, Adv. in Appl. Math., 44, 4, 309-328 (2010) · Zbl 1191.52002 · doi:10.1016/j.aam.2009.09.002
[18] B{\`“o}r{\'”o}czky, K{\'a}roly, Jr., The stability of the Rogers-Shephard inequality and of some related inequalities, Adv. Math., 190, 1, 47-76 (2005) · Zbl 1063.52002 · doi:10.1016/j.aim.2003.11.015
[19] B{\`“o}r{\'”o}czky, K{\'a}roly J., Stability of the Blaschke-Santal\'o and the affine isoperimetric inequality, Adv. Math., 225, 4, 1914-1928 (2010) · Zbl 1216.52007 · doi:10.1016/j.aim.2010.04.014
[20] B{\`“o}r{\'”o}czky, K{\'a}roly J., Stronger versions of the Orlicz-Petty projection inequality, J. Differential Geom., 95, 2, 215-247 (2013) · Zbl 1291.52012
[21] [BMK] K.J. B\`“or\'”oczky and Jr. E. Makai, On the volume product of planar polar convex bodies-upper estimates: the polygonal case and stability, in preparation.
[22] Chow, Bennett, Deforming convex hypersurfaces by the \(n\) th root of the Gaussian curvature, J. Differential Geom., 22, 1, 117-138 (1985) · Zbl 0589.53005
[23] Chow, Bennett, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math., 87, 1, 63-82 (1987) · Zbl 0608.53005 · doi:10.1007/BF01389153
[24] Campi, S.; Gronchi, P., The \(L^p\)-Busemann-Petty centroid inequality, Adv. Math., 167, 1, 128-141 (2002) · Zbl 1002.52005 · doi:10.1006/aima.2001.2036
[25] Campi, Stefano; Gronchi, Paolo, On the reverse \(L^p\)-Busemann-Petty centroid inequality, Mathematika, 49, 1-2, 1-11 (2004) (2002) · Zbl 1056.52005 · doi:10.1112/S0025579300016004
[26] Diskant, V. I., Stability of the solution of a Minkowski equation, Sibirsk. Mat. \v Z., 14, 669-673, 696; English transl., Siberian Math. J. 14 (1974), 466-473 (1973) · Zbl 0281.52004
[27] Figalli, A.; Maggi, F.; Pratelli, A., A refined Brunn-Minkowski inequality for convex sets, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 26, 6, 2511-2519 (2009) · Zbl 1192.52015 · doi:10.1016/j.anihpc.2009.07.004
[28] Gardner, Richard J., Geometric tomography, Encyclopedia of Mathematics and its Applications 58, xvi+424 pp. (1995), Cambridge University Press, Cambridge · Zbl 0864.52001
[29] Gerhardt, Claus, Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations, 49, 1-2, 471-489 (2014) · Zbl 1284.53062 · doi:10.1007/s00526-012-0589-x
[30] Gruber, Peter M.; Schuster, Franz E., An arithmetic proof of John’s ellipsoid theorem, Arch. Math. (Basel), 85, 1, 82-88 (2005) · Zbl 1086.52002 · doi:10.1007/s00013-005-1326-x
[31] Groemer, H., Stability properties of geometric inequalities, Amer. Math. Monthly, 97, 5, 382-394 (1990) · Zbl 0721.52001 · doi:10.2307/2324388
[32] Groemer, H., Stability of geometric inequalities. Handbook of convex geometry, Vol.A, B, 125-150 (1993), North-Holland, Amsterdam · Zbl 0789.52001
[33] Guan, Pengfei; Li, Junfang, The quermassintegral inequalities for \(k\)-convex starshaped domains, Adv. Math., 221, 5, 1725-1732 (2009) · Zbl 1170.53058 · doi:10.1016/j.aim.2009.03.005
[34] [PL] P. Guan and L. Ni, Entropy and a convergence theorem for Gauss curvature flow in high dimension, arXiv:1306.0625v1. · Zbl 1386.35180
[35] Haberl, Christoph; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, The even Orlicz Minkowski problem, Adv. Math., 224, 6, 2485-2510 (2010) · Zbl 1198.52003 · doi:10.1016/j.aim.2010.02.006
[36] Haberl, Christoph; Schuster, Franz E., General \(L_p\) affine isoperimetric inequalities, J. Differential Geom., 83, 1, 1-26 (2009) · Zbl 1185.52005
[37] Hug, Daniel, Curvature relations and affine surface area for a general convex body and its polar, Results Math., 29, 3-4, 233-248 (1996) · Zbl 0861.52003 · doi:10.1007/BF03322221
[38] Ivaki, Mohammad N., Centro-affine curvature flows on centrally symmetric convex curves, Trans. Amer. Math. Soc., 366, 11, 5671-5692 (2014) · Zbl 1298.53062 · doi:10.1090/S0002-9947-2014-05928-X
[39] Ivaki, Mohammad N., A flow approach to the \(L_{-2}\) Minkowski problem, Adv. in Appl. Math., 50, 3, 445-464 (2013) · Zbl 1261.53065 · doi:10.1016/j.aam.2012.09.003
[40] Ivaki, Mohammad N., On the Stability of the p-Affine Isoperimetric Inequality, J. Geom. Anal., 24, 4, 1898-1911 (2014) · Zbl 1433.52009 · doi:10.1007/s12220-013-9401-1
[41] Ivaki, Mohammad N., An application of dual convex bodies to the inverse Gauss curvature flow, Proc. Amer. Math. Soc., 143, 3, 1257-1271 (2015) · Zbl 1307.53053 · doi:10.1090/S0002-9939-2014-12314-8
[42] Ivaki, Mohammad N., Convex bodies with pinched Mahler volume under the centro-affine normal flows, Calc. Var. Partial Differential Equations, 54, 1, 831-846 (2015) · Zbl 1323.53077 · doi:10.1007/s00526-014-0807-9
[43] [Ivaki5] M. N. Ivaki, Centro-affine normal flows on curves: Harnack’s estimate and Ancient solutions, Ann. Inst. H. Poincare Anal. Non Lin\'eaire, DOI 10.1016/j.anihpc.2014.07.001. · Zbl 1329.53096
[44] Ivaki, Mohammad N.; Stancu, Alina, Volume preserving centro-affine normal flows, Comm. Anal. Geom., 21, 3, 671-685 (2013) · Zbl 1282.53011 · doi:10.4310/CAG.2013.v21.n3.a9
[45] John, Fritz, Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187-204 (1948), Interscience Publishers, Inc., New York, N. Y. · Zbl 0034.10503
[46] Krylov, N. V., Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series) 7, xiv+462 pp. (1987), D. Reidel Publishing Co., Dordrecht · Zbl 0619.35004 · doi:10.1007/978-94-010-9557-0
[47] Li, Ai-Jun; Leng, Gangsong, A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc., 139, 4, 1473-1481 (2011) · Zbl 1225.52006 · doi:10.1090/S0002-9939-2010-10651-2
[48] Li, Qi-Rui, Surfaces expanding by the power of the Gauss curvature flow, Proc. Amer. Math. Soc., 138, 11, 4089-4102 (2010) · Zbl 1204.53053 · doi:10.1090/S0002-9939-2010-10431-8
[49] Loftin, John; Tsui, Mao-Pei, Ancient solutions of the affine normal flow, J. Differential Geom., 78, 1, 113-162 (2008) · Zbl 1146.53038
[50] Ludwig, Monika; Reitzner, Matthias, A classification of \({\rm SL}(n)\) invariant valuations, Ann. of Math. (2), 172, 2, 1219-1267 (2010) · Zbl 1223.52007 · doi:10.4007/annals.2010.172.1223
[51] Lutwak, Erwin, Mixed projection inequalities, Trans. Amer. Math. Soc., 287, 1, 91-105 (1985) · Zbl 0555.52010 · doi:10.2307/2000399
[52] Lutwak, Erwin, Volume of mixed bodies, Trans. Amer. Math. Soc., 294, 2, 487-500 (1986) · Zbl 0591.52016 · doi:10.2307/2000195
[53] Lutwak, Erwin, On some affine isoperimetric inequalities, J. Differential Geom., 23, 1, 1-13 (1986) · Zbl 0592.52005
[54] Lutwak, Erwin, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. (3), 60, 2, 365-391 (1990) · Zbl 0703.52005 · doi:10.1112/plms/s3-60.2.365
[55] Lutwak, Erwin, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math., 118, 2, 244-294 (1996) · Zbl 0853.52005 · doi:10.1006/aima.1996.0022
[56] Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, \(L_p\) affine isoperimetric inequalities, J. Differential Geom., 56, 1, 111-132 (2000) · Zbl 1034.52009
[57] Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, Orlicz centroid bodies, J. Differential Geom., 84, 2, 365-387 (2010) · Zbl 1206.49050
[58] Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, Orlicz projection bodies, Adv. Math., 223, 1, 220-242 (2010) · Zbl 1437.52006 · doi:10.1016/j.aim.2009.08.002
[59] Paouris, Grigoris; Werner, Elisabeth M., Relative entropy of cone measures and \(L_p\) centroid bodies, Proc. Lond. Math. Soc. (3), 104, 2, 253-286 (2012) · Zbl 1246.52008 · doi:10.1112/plms/pdr030
[60] Petty, C. M., Centroid surfaces, Pacific J. Math., 11, 1535-1547 (1961) · Zbl 0103.15604
[61] Petty, C. M., Isoperimetric problems. Proceedings of the Conference on Convexity and Combinatorial Geometry , Univ. Oklahoma, Norman, Okla., 1971, 26-41 (1971), Dept. Math., Univ. Oklahoma, Norman, Okla. · Zbl 0245.52007
[62] Petty, C. M., Affine isoperimetric problems. Discrete geometry and convexity, New York, 1982, Ann. New York Acad. Sci. 440, 113-127 (1985), New York Acad. Sci., New York · Zbl 0576.52003 · doi:10.1111/j.1749-6632.1985.tb14545.x
[63] Santal{\'o}, L. A., An affine invariant for convex bodies of \(n\)-dimensional space, Portugaliae Math., 8, 155-161 (1949) · Zbl 0038.35702
[64] Sapiro, Guillermo; Tannenbaum, Allen, On affine plane curve evolution, J. Funct. Anal., 119, 1, 79-120 (1994) · Zbl 0801.53008 · doi:10.1006/jfan.1994.1004
[65] Saint-Raymond, J., Sur le volume des corps convexes sym\'etriques. Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie 46, Exp. No. 11, 25 pp. (1981), Univ. Paris VI, Paris · Zbl 0531.52006
[66] Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 44, xiv+490 pp. (1993), Cambridge University Press, Cambridge · Zbl 0798.52001 · doi:10.1017/CBO9780511526282
[67] Schn{\"u}rer, Oliver C., Surfaces contracting with speed \(\vert A\vert^2\), J. Differential Geom., 71, 3, 347-363 (2005) · Zbl 1101.53002
[68] Schn{\"u}rer, Oliver C., Surfaces expanding by the inverse Gau\ss curvature flow, J. Reine Angew. Math., 600, 117-134 (2006) · Zbl 1119.53045 · doi:10.1515/CRELLE.2006.088
[69] Schulze, Felix, Convexity estimates for flows by powers of the mean curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5, 2, 261-277 (2006) · Zbl 1150.53024
[70] Smoczyk, Knut, Starshaped hypersurfaces and the mean curvature flow, Manuscripta Math., 95, 2, 225-236 (1998) · Zbl 0903.53039 · doi:10.1007/s002290050025
[71] Stancu, Alina, The discrete planar \(L_0\)-Minkowski problem, Adv. Math., 167, 1, 160-174 (2002) · Zbl 1005.52002 · doi:10.1006/aima.2001.2040
[72] Stancu, Alina, On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem, Adv. Math., 180, 1, 290-323 (2003) · Zbl 1054.52001 · doi:10.1016/S0001-8708(03)00005-7
[73] Stancu, Alina, Two volume product inequalities and their applications, Canad. Math. Bull., 52, 3, 464-472 (2009) · Zbl 1178.52005 · doi:10.4153/CMB-2009-049-0
[74] Stancu, Alina, The necessary condition for the discrete \(L_0\)-Minkowski problem in \(\mathbb{R}^2\), J. Geom., 88, 1-2, 162-168 (2008) · Zbl 1132.52300 · doi:10.1007/s00022-007-1937-4
[75] Stancu, Alina, Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. IMRN, 10, 2289-2320 (2012) · Zbl 1250.52009 · doi:10.1093/imrn/rnr110
[76] Stancu, Alina, Some affine invariants revisited. Asymptotic geometric analysis, Fields Inst. Commun. 68, 341-357 (2013), Springer, New York · Zbl 1276.52011 · doi:10.1007/978-1-4614-6406-8\_16
[77] Stancu, Alina, Flows by powers of centro-affine curvature. Geometric partial differential equations, CRM Series 15, 251-265 (2013), Ed. Norm., Pisa · Zbl 1350.53086 · doi:10.1007/978-88-7642-473-1\_13
[78] Tso, Kaising, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math., 38, 6, 867-882 (1985) · Zbl 0612.53005 · doi:10.1002/cpa.3160380615
[79] Wu, Chuanxi; Tian, Daping; Li, Guanghan, Forced flow by powers of the \(m\) th mean curvature, Armen. J. Math., 3, 2, 61-91 (2010) · Zbl 1281.53070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.