×

Convex bodies with pinched Mahler volume under the centro-affine normal flows. (English) Zbl 1323.53077

Summary: We study the asymptotic behavior of smooth, origin-symmetric, strictly convex bodies under the centro-affine normal flows. By means of a stability version of the Blaschke-Santaló inequality, we obtain regularity of the solutions provided that initial convex bodies have almost maximum Mahler volume. We prove that suitably rescaled solutions converge sequentially to the unit ball in the \(\mathcal {C}^\infty\) topology modulo \(\mathrm{SL}(n+1)\).

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
52A05 Convex sets without dimension restrictions (aspects of convex geometry)
35K55 Nonlinear parabolic equations
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces

References:

[1] Alessandroni, R., Sinestrari, C.: Evolution of hypersurfaces by powers of the scalar curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9, 541-571 (2010) · Zbl 1248.53047
[2] Andrews, B.: Harnack inequalities for evolving hypersrufaces. Math. Z. 217, 179-197 (1994) · Zbl 0807.53044 · doi:10.1007/BF02571941
[3] Andrews, B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43, 207-230 (1996) · Zbl 0858.53005 · doi:10.4310/jdg/1214458106
[4] Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151-161 (1999) · Zbl 0936.35080 · doi:10.1007/s002220050344
[5] Andrews, B.: Motion of hypersurfaces by Gauss curvature. Pacif. J. Math. 195(1), 1-34 (2000) · Zbl 1028.53072 · doi:10.2140/pjm.2000.195.1
[6] Andrews, B., Chen, X.: Surfaces moving by powers of Gauss curvature. Pure Appl. Math. Q. 8(4), 825-834 (2012) · Zbl 1263.53058 · doi:10.4310/PAMQ.2012.v8.n4.a1
[7] Andrews, B., McCoy, J.: Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature. Trans. Am. Math. Soc. 364(7), 3427-3447 (2012) · Zbl 1277.53061 · doi:10.1090/S0002-9947-2012-05375-X
[8] Andrews, B., McCoy, J., Zheng, Y.: Contracting convex hypersurfaces by curvature. Calc. Var. Partial Differ. Equ. 47(3-4), 611-665 (2013) · Zbl 1288.35292 · doi:10.1007/s00526-012-0530-3
[9] Angenent, S., Sapiro, G., Tannenbaum, A.: On the heat equation for non-convex curves. J. Am. Math. Soc. 11(3), 601-634 (1998) · Zbl 0902.35048 · doi:10.1090/S0894-0347-98-00262-8
[10] Ball, B., Böröczky, K.J.: Stability of some versions of the Prékopa-Leindler inequality. Monatsh. Math. 163, 1-14 (2011) · Zbl 1217.60014 · doi:10.1007/s00605-010-0222-z
[11] Blaschke, W.: Über affine Geometrie I. Isoperimetrische Eigenschaften von Ellipse und Ellipsoid. Leipz. Ber. 68, 217-239 (1916) · JFM 46.1111.02
[12] Cabezas-Rivas, E., Sinestrari, C.: Volume-preserving flow by powers of the \[m\] m-th mean curvature. Calc. Var. Partial Differ. Equ. 38, 441-469 (2010) · Zbl 1197.53082 · doi:10.1007/s00526-009-0294-6
[13] Chen, S.: Classifying convex compact ancient solutions to the affine curve shortening flow, J. Geom. Anal. (2013). doi: 10.1007/s12220-013-9456-z · Zbl 1150.53024
[14] Chow, B.: Deforming convex hypersurfaces by the \[n\] n-th root of the Gaussian curvature. J. Differ. Geom. 22(1), 117-138 (1985) · Zbl 0589.53005 · doi:10.4310/jdg/1214439724
[15] Guan, P., Ni, L.: Entropy and a convergence theorem for Gauss curvature flow in high dimension, preprint (2013). http://arxiv.org/abs/1306.0625 · Zbl 1386.35180
[16] Ivaki, M.N.: Centro-affine curvature flows on centrally symmetric convex curves. Trans. Am. Math. Soc. 366(11), 5671-5692 (2014) · Zbl 1298.53062
[17] Ivaki, M.N.: Stability of the \[p\] p-affine isoperimetric inequality. J. Geom. Anal. 24(4), 1898-1911 (2014). doi: 10.1007/s12220-013-9401-1 · Zbl 1433.52009 · doi:10.1007/s12220-013-9401-1
[18] Ivaki, M.N.: The planar Busemann-Petty centroid inequality and its stability. Trans. Am. Math. Soc. (2014). http://arxiv.org/abs/1312.4834v6 (to appear) · Zbl 1335.52022
[19] Ivaki, M.N.: Centro-affine normal flows on curves: Harnack estimates and ancient solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014). doi:10.1016/j.anihpc.2014.07.001 · Zbl 1329.53096
[20] Ivaki, M.N.: Stability of the Blaschke-Santaló inequality in the plane. Monatsh. Math. (2014). doi:10.1007/s00605-014-0651-1 · Zbl 1334.52008
[21] Ivaki, M.N.: A note on the Gauss curvature flow, preprint (2014). http://arxiv.org/abs/1409.2629v2 · Zbl 1357.35302
[22] Ivaki, M.N.: Classification of compact convex ancient solutions of the planar affine normal flow. J. Geom. Anal. (2014) (to appear) · Zbl 1335.53085
[23] Ivaki, M.N., Stancu A.: Volume preserving centro-affine normal flows, Commun. Anal. Geom. (2013) doi:10.4310/CAG.2013.v21.n3.a9 · Zbl 1282.53011
[24] Krylov, N.V., Safonov, V.M.: A certain property of solutions of parabolic equations with measurable coefficients, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 44(1), 161-175 (1980) · Zbl 0439.35023
[25] Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in domains. Izvestiya: Math. 20(3), 459-492 (1983) · Zbl 0529.35026 · doi:10.1070/IM1983v020n03ABEH001360
[26] Krylov, N.V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. D. Reidel Publishing Co., Dordrecht (1987) · Zbl 0619.35004 · doi:10.1007/978-94-010-9557-0
[27] Loftin, J., Tsui, M.P.: Ancient solutions of the affine normal flow. J. Differ. Geom. 78, 113-162 (2008) · Zbl 1146.53038 · doi:10.4310/jdg/1197320604
[28] Lutwak, E.: The Brunn-Minkowski-Fiery theory II:affine and geominimal surface areas. Adv. Math. 118, 244-294 (1996) · Zbl 0853.52005 · doi:10.1006/aima.1996.0022
[29] Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119, 79-120 (1994) · Zbl 0801.53008 · doi:10.1006/jfan.1994.1004
[30] Schnürer, O.C.: Surfaces contracting with speed \[|A|^2\]|A|2. J. Differ. Geom. 71(3), 347-363 (2005) · Zbl 1101.53002 · doi:10.4310/jdg/1143571987
[31] Schulze, F.: Convexity estimates for flows by powers of the mean curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(2), 261-277 (2006) · Zbl 1150.53024
[32] Smoczyk, K.: Starshaped hypersurfaces and the mean curvature flow. Manuscr. Math. 95(2), 225-236 (1998) · Zbl 0903.53039 · doi:10.1007/s002290050025
[33] Stancu, A.: Centro-affine invariants for smooth convex bodies. Int. Math. Res. Not. IMRN (2011). doi:10.1093/imrn/rnr110 · Zbl 1250.52009
[34] Tsai, H.D.: \[C^{2,\alpha }\] C2,α estimate of a parabolic Monge-Ampère equation on \[\mathbb{S}^nSn\]. Proc. Am. Math. Soc. 131(10), 3067-3074 (2003) · Zbl 1036.35107 · doi:10.1090/S0002-9939-03-06848-5
[35] Tso, K.: Deforming a hypersurface by its Gauss-Kronecker curvature. Commun. Pure Appl. Math. 38, 867-882 (1985) · Zbl 0612.53005 · doi:10.1002/cpa.3160380615
[36] Wu, C., Tian, D., Li, G.: Forced flows by powers of the \[m\] m-th mean curvature. Armen. J. Math. 3, 61-91 (2010) · Zbl 1281.53070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.