×

Orlicz projection bodies. (English) Zbl 1437.52006

The last decades have seen a tremendous extension of the Brunn-Minkowski theory of convex bodies, to \(L_p\), Orlicz, and dual versions. Here, the Orlicz projection body is introduced. Let \(\phi:{\mathbb R}\to[0,\infty)\) be a convex function with \(\phi(0)=0\), strictly decreasing on \((-\infty,0]\) or strictly increasing on \([0,\infty)\). For a convex body \(K\subset {\mathbb R}^n\), the support function of the Orlicz projection body \(\Pi_\phi K\) is defined by \[ h(\Pi_\phi K,x)=\inf\left\{\lambda>0: \int_{\partial K} \phi\left(\frac{\langle x,\nu(y)\rangle}{\lambda\langle y,\nu(y)\rangle}\right)\langle y,\nu(y)\rangle\,d{\mathcal H}^{n-1}(x)\le n|K|\right\}\] for \(x\in{\mathbb R}^n\). Here \(|K|\) denotes the volume of \(K\), \(\langle\cdot\,,\cdot\rangle\) is the scalar product, \({\mathcal H}^{n-1}\) the \((n-1)\)-dimensional Hausdorff measure, and \(\nu\) the (\({\mathcal H}^{n-1}\)-almost everywhere on \(\partial K\) unique) outer unit normal vector of \(K\). For \(\phi(t)=|t|\), this yields the classical projection body (introduced by Minkowski), up to a factor. Several later generalizations are included. If \(A\) is a volume preserving linear transformation, then \(\Pi_\phi AK= A^{-t}\Pi_\phi K\). The main result of the paper is the Orlicz-Petty projection inequality, saying that, for \(K\) containing the origin in the interior, the volume quotient \(|\Pi_\phi^\circ|/|K|\), where \(^\circ\) indicates the polar body, is maximized when \(K\) is an ellipsoid with center at the origin. That this is the only extremal, is proved if \(\phi\) is strictly convex, and was later proved without this assumption by K. Böröczky jun. [J. Differ. Geom. 95, No. 2, 215–247 (2013; Zbl 1291.52012)], who also obtained corresponding stability results.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry

Citations:

Zbl 1291.52012
Full Text: DOI

References:

[2] Bastero, J.; Romance, M., Positions of convex bodies associated to extremal problems and isotropic measures, Adv. Math., 184, 1, 64-88 (2004), MR2047849, Zbl 1053.52011 · Zbl 1053.52011
[3] Bianchini, C.; Colesanti, A., A sharp Rogers and Shephard inequality for the \(p\)-difference body of planar convex bodies, Proc. Amer. Math. Soc., 136, 2575-2582 (2008), MR2390529, Zbl 1143.52008 · Zbl 1143.52008
[5] Bolker, E. D., A class of convex bodies, Trans. Amer. Math. Soc., 145, 323-345 (1969), MR0256265, Zbl 0194.23102 · Zbl 0194.23102
[6] Campi, S.; Gronchi, P., The \(L^p\)-Busemann-Petty centroid inequality, Adv. Math., 167, 128-141 (2002), MR1901248, Zbl 1002.52005 · Zbl 1002.52005
[7] Campi, S.; Gronchi, P., On the reverse \(L^p\)-Busemann-Petty centroid inequality, Mathematika, 49, 1-11 (2002), MR2059037, Zbl 1056.52005 · Zbl 1056.52005
[8] Campi, S.; Gronchi, P., Extremal convex sets for Sylvester-Busemann type functionals, Appl. Anal., 85, 129-141 (2006), MR2198835, Zbl 1090.52006 · Zbl 1090.52006
[9] Campi, S.; Gronchi, P., On volume product inequalities for convex sets, Proc. Amer. Math. Soc., 134, 2393-2402 (2006), MR2213713, Zbl 1095.52002 · Zbl 1095.52002
[10] Campi, S.; Gronchi, P., Volume inequalities for \(L_p\)-zonotopes, Mathematika, 53, 71-80 (2006), (2007), MR2304053, Zbl 1117.52011 · Zbl 1117.52011
[12] Chou, K. S.; Wang, X. J., The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205, 33-83 (2006), MR2254308, Zbl pre05054348 · Zbl 1245.52001
[14] Ewald, G.; Larman, D. G.; Rogers, C. A., The directions of the line segments and of the \(r\)-dimensional balls on the boundary of a convex body in Euclidean space, Mathematika, 17, 1-20 (1970), MR0270271, Zbl 0199.57002 · Zbl 0199.57002
[15] Fleury, B.; Guédon, O.; Paouris, G. A., A stability result for mean width of \(L_p\)-centroid bodies, Adv. Math., 214, 865-877 (2007), MR2349721, Zbl 1132.52012 · Zbl 1132.52012
[16] Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), 39, 355-405 (2002), MR1898210, Zbl 1019.26008 · Zbl 1019.26008
[17] Gardner, R. J., Geometric Tomography, Encyclopedia Math. Appl., vol. 58 (2006), Cambridge University Press: Cambridge University Press New York, MR2251886, Zbl 1102.52002 · Zbl 1102.52002
[18] Giannopoulos, A.; Pajor, A.; Paouris, G., A note on subgaussian estimates for linear functionals on convex bodies, Proc. Amer. Math. Soc., 135, 2599-2606 (2007), MR2302581, Zbl 1120.52003 · Zbl 1120.52003
[20] Haberl, C., \(L_p\) intersection bodies, Adv. Math., 217, 2599-2624 (2008), MR2397461, Zbl 1140.52003 · Zbl 1140.52003
[22] Haberl, C.; Ludwig, M., A characterization of \(L_p\) intersection bodies, Int. Math. Res. Not., 2006, 17 (2006), Article ID 10548, 29 pp., MR2250020, Zbl 1115.52006 · Zbl 1115.52006
[24] Haberl, C.; Schuster, F., Asymmetric affine \(L_p\) Sobolev inequalities, J. Funct. Anal., 257, 641-658 (2009) · Zbl 1180.46023
[25] Hu, C.; Ma, X.-N.; Shen, C., On the Christoffel-Minkowski problem of Firey’s \(p\)-sum, Calc. Var. Partial Differential Equations, 21, 137-155 (2004), MR2085300, Zbl pre02113880 · Zbl 1161.35391
[26] Latała, R.; Wojtaszczyk, J. O., On the infimum convolution inequality, Studia Math., 189, 147-187 (2008), MR2449135, Zbl pre05354528 · Zbl 1161.26010
[27] Leichtweiss, K., Affine Geometry of Convex Bodies (1998), Johann Ambrosius Barth Verlag: Johann Ambrosius Barth Verlag Heidelberg, MR1630116, Zbl 0899.52005 · Zbl 0899.52005
[28] Ludwig, M., Projection bodies and valuations, Adv. Math., 172, 158-168 (2002), MR1942402, Zbl 1019.52003 · Zbl 1019.52003
[29] Ludwig, M., Valuations on polytopes containing the origin in their interiors, Adv. Math., 170, 239-256 (2002), MR1932331, Zbl 1015.52012 · Zbl 1015.52012
[30] Ludwig, M., Ellipsoids and matrix-valued valuations, Duke Math. J., 119, 159-188 (2003), MR1991649, Zbl 1033.52012 · Zbl 1033.52012
[31] Ludwig, M., Minkowski valuations, Trans. Amer. Math. Soc., 357, 4191-4213 (2005), MR2159706, Zbl 1077.52005 · Zbl 1077.52005
[32] Ludwig, M., Intersection bodies and valuations, Amer. J. Math., 128, 1409-1428 (2006), MR2275906, Zbl 1115.52007 · Zbl 1115.52007
[35] Lutwak, E., On some affine isoperimetric inequalities, J. Differential Geom., 23, 1-13 (1986), MR0840399, Zbl 0592.52005 · Zbl 0592.52005
[36] Lutwak, E., The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38, 131-150 (1993), MR1231704, Zbl 0788.52007 · Zbl 0788.52007
[37] Lutwak, E., The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math., 118, 244-294 (1996), MR1378681, Zbl 0853.52005 · Zbl 0853.52005
[38] Lutwak, E.; Oliker, V., On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., 41, 227-246 (1995), MR1316557, Zbl 0867.52003 · Zbl 0867.52003
[39] Lutwak, E.; Zhang, G., Blaschke-Santaló inequalities, J. Differential Geom., 47, 1-16 (1997), MR1601426, Zbl 0906.52003 · Zbl 0906.52003
[40] Lutwak, E.; Yang, D.; Zhang, G., \(L_p\) affine isoperimetric inequalities, J. Differential Geom., 56, 111-132 (2000), MR1863023, Zbl 1034.52009 · Zbl 1034.52009
[41] Lutwak, E.; Yang, D.; Zhang, G., A new ellipsoid associated with convex bodies, Duke Math. J., 104, 375-390 (2000), MR1781476, Zbl 0974.52008 · Zbl 0974.52008
[42] Lutwak, E.; Yang, D.; Zhang, G., The Cramer-Rao inequality for star bodies, Duke Math. J., 112, 59-81 (2002), MR1890647, Zbl 1021.52008 · Zbl 1021.52008
[43] Lutwak, E.; Yang, D.; Zhang, G., Sharp affine \(L_p\) Sobolev inequalities, J. Differential Geom., 62, 17-38 (2002), MR1987375, Zbl 1073.46027 · Zbl 1073.46027
[44] Lutwak, E.; Yang, D.; Zhang, G., Volume inequalities for subspaces of \(L_p\), J. Differential Geom., 68, 159-184 (2004), MR2152912, Zbl 1119.52006 · Zbl 1119.52006
[45] Lutwak, E.; Yang, D.; Zhang, G., \(L^p\) John ellipsoids, Proc. London Math. Soc., 90, 497-520 (2005), MR2142136, Zbl 1074.52005 · Zbl 1074.52005
[46] Lutwak, E.; Yang, D.; Zhang, G., Optimal Sobolev norms and the \(L^p\) Minkowski problem, Int. Math. Res. Not., 2006, 1-21 (2006), Article ID 62987, MR2211138, Zbl 1110.46023 · Zbl 1110.46023
[47] Lutwak, E.; Yang, D.; Zhang, G., Volume inequalities for isotropic measures, Amer. J. Math., 129, 1711-1723 (2007), MR2369894, Zbl 1134.52010 · Zbl 1134.52010
[49] Meyer, M.; Pajor, A., On the Blaschke-Santaló inequality, Arch. Math. (Basel), 55, 82-93 (1990), MR1059519, Zbl 0718.52011 · Zbl 0718.52011
[50] Meyer, M.; Werner, E., On the \(p\)-affine surface area, Adv. Math., 152, 288-313 (2000), MR1764106, Zbl 0964.52005 · Zbl 0964.52005
[52] Paouris, G., On the \(\psi_2\)-behaviour of linear functionals on isotropic convex bodies, Stud. Math., 168, 285-299 (2005), MR2146128, Zbl 1078.52501 · Zbl 1078.52501
[53] Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16, 1021-1049 (2006), MR2276533, Zbl 1114.52004 · Zbl 1114.52004
[54] Paouris, G., Concentration of mass on isotropic convex bodies, C. R. Math. Acad. Sci. Paris, 342, 179-182 (2006) · Zbl 1087.52002
[56] Petty, C. M., Centroid surfaces, Pacific J. Math., 11, 1535-1547 (1961), MR0133733, Zbl 0103.15604 · Zbl 0103.15604
[57] Ryabogin, D.; Zvavitch, A., The Fourier transform and Firey projections of convex bodies, Indiana Univ. Math. J., 53, 667-682 (2004), MR2086696, Zbl 1062.52004 · Zbl 1062.52004
[58] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44 (1993), Cambridge University Press: Cambridge University Press Cambridge, MR1216521, Zbl 0798.52001 · Zbl 0798.52001
[59] Schütt, C.; Werner, E., Surface bodies and \(p\)-affine surface area, Adv. Math., 187, 98-145 (2004), MR2074173, Zbl 1089.52002 · Zbl 1089.52002
[60] Stancu, A., The discrete planar \(L_0\)-Minkowski problem, Adv. Math., 167, 160-174 (2002), MR1901250, Zbl 1005.52002 · Zbl 1005.52002
[61] Thompson, A. C., Minkowski Geometry, Encyclopedia Math. Appl., vol. 63 (1996), Cambridge University Press: Cambridge University Press Cambridge, MR1406315, Zbl 0868.52001 · Zbl 0868.52001
[62] Umanskiy, V., On solvability of two-dimensional \(L_p\)-Minkowski problem, Adv. Math., 180, 176-186 (2003), MR2019221, Zbl 1048.52001 · Zbl 1048.52001
[63] Werner, E., On \(L_p\)-affine surface areas, Indiana Univ. Math. J., 56, 2305-2323 (2007), MR2360611, Zbl 1132.52008 · Zbl 1132.52008
[64] Werner, E.; Ye, D.-P., New \(L_p\) affine isoperimetric inequalities, Adv. Math., 218, 762-780 (2008), MR2414321, Zbl 1155.52002 · Zbl 1155.52002
[65] Yaskin, V.; Yaskina, M., Centroid bodies and comparison of volumes, Indiana Univ. Math. J., 55, 1175-1194 (2006), MR2244603, Zbl 1102.52005 · Zbl 1102.52005
[66] Zhang, G., The affine Sobolev inequality, J. Differential Geom., 53, 183-202 (1999), MR1776095, Zbl 1040.53089 · Zbl 1040.53089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.