×

A meshless discretization method for Markov state models applied to explicit water peptide folding simulations. (English) Zbl 1269.82072

Griebel, Michael (ed.) et al., Meshfree methods for partial differential equations VI. Selected papers of the sixth international workshop, Bonn, Germany, October 4–6, 2011. Berlin: Springer (ISBN 978-3-642-32978-4/hbk; 978-3-642-32979-1/ebook). Lecture Notes in Computational Science and Engineering 89, 141-154 (2013).
Summary: Markov state models (MSMs) are widely used to represent molecular conformational changes as jump-like transitions between subsets of the conformational state space. However, the simulation of peptide folding in explicit water is usually said to be unsuitable for the MSM framework. In this article, we summarize the theoretical background of MSMs and indicate that explicit water simulations do not contradict these principles. The algorithmic framework of a meshless conformational space discretization is applied to an explicit water system and the sampling results are compared to a long-term molecular dynamics trajectory. The meshless discretization approach is based on spectral clustering of stochastic matrices (MSMs) and allows for a parallelization of MD simulations. In our example of tri-alanine, we are able to compute the same distribution of a long term simulation in less computing time.
For the entire collection see [Zbl 1257.65003].

MSC:

82D60 Statistical mechanics of polymers
82-08 Computational methods (statistical mechanics) (MSC2010)
60J75 Jump processes (MSC2010)
Full Text: DOI

References:

[1] Beberg, A.; Pande, V. S., Folding@home: lessons from eight years of distributed computing, in IEEE Computer Society Los Alamitos, 1-8 (2009), USA: CA, USA
[2] Berendsen, H. J.C.; Postma, J. P.M.; DiNola, A.; Haak, J. R., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684-3690 (1984) · doi:10.1063/1.448118
[3] Bowman, G. R.; Huang, X.; Pande, V. S., Using generalized ensemble simulations and Markov state models to identify conformational states, Methods, 49, 2, 197-201 (2009) · doi:10.1016/j.ymeth.2009.04.013
[4] Bussi, G.; Donadio, D.; Parrinello, M., Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101 (2007) · doi:10.1063/1.2408420
[5] Case, D. A.; Cheatham, T. E. III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M. Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber biomolecular simulation programs, J. Comput. Chem., 26, 1668-1688 (2005) · doi:10.1002/jcc.20290
[6] Chennubhotla, C.; Bahar, I., Markov methods for hierarchical coarse-graining of large protein dynamics, J. Comput. Biol., 14, 6, 765-776 (2007) · doi:10.1089/cmb.2007.R015
[7] Chodera, J. D.; Swope, W. C.; Pitera, J. W.; Dill, K. A., Long-time protein folding dynamics from short-time molecular dynamics simulations, Multiscale Model. Simul., 5, 4, 1214-1226 (2006) · Zbl 1133.92011 · doi:10.1137/06065146X
[8] Deuflhard, Peter; Weber, Marcus, Robust Perron cluster analysis in conformation dynamics, Linear Algebra and its Applications, 398, 161-184 (2005) · Zbl 1070.15019
[9] Engin, O.; Sayar, M.; Erman, B., The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides, Phys. Biol., 6, 016001 (2009) · doi:10.1088/1478-3975/6/1/016001
[10] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577-8592 (1995) · doi:10.1063/1.470117
[11] Gohlke, H.; Thorpe, M. F., A natural coarse graining for simulating large biomolecular motion, Biophys. J., 91, 6, 2115-2120 (2006) · doi:10.1529/biophysj.106.083568
[12] Griebel, M.; Knapek, S.; Zumbusch, G., Numerical Simulation in Molecular Dynamics (2007), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1131.76001
[13] Hess, B.; Bekker, H.; Berendsen, H. J.C.; Fraaije, J. G.E. M., LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472 (1997) · doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[14] Hess, B.; Kutzner, C.; van der Spoel, D.; Indahl, E., GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 3, 435-447 (2008) · doi:10.1021/ct700301q
[15] Horn, H. W.; Swope, W. C.; Pitera, J. W., Characterization of the TIP4P-Ew water model: vapor pressure and boiling point, J. Chem. Phys., 123, 194504 (2005) · doi:10.1063/1.2085031
[16] Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins, 65, 712-725 (2006) · doi:10.1002/prot.21123
[17] Huisinga, W., Metastability of Markovian systems: a transfer operator based approach in application to molecular dynamics (2001), Berlin, Doctoral Thesis: Freie Universität, Berlin, Doctoral Thesis
[18] Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I., Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method, J. Comput. Chem., 21, 132-146 (2000)
[19] Jakalian, A.; Jack, D. B.; Bayly, C. I., Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem., 23, 1623-1641 (2002)
[20] Leach, A. R., Molecular Modelling: Principles and Applications (2001), Harlow: Prentice Hall, Harlow
[21] Mu, Y.; Stock, G., Conformational dynamics of trialanine in water: a molecular dynamics study, J. Phys. Chem. B, 106, 5294-5301 (2002) · doi:10.1021/jp013977e
[22] Mu, Y.; Kosov, D.; Stock, G., Conformational dynamics of trialanine in Water.2 Comparison of AMBER, CHARMM, GROMOS, and OPLS Force Fields to NMR and infrared experiments J, Phys. Chem. B, 107, 5064 (2003)
[23] Pan, A.; Roux, B., Building Markov state models along pathways to determine free energies and rates of transitions. J Chem. Phys., 129, 6, 064107 (2008)
[24] Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Fischbach, M.; Held, M.; Chodera, J. D.; Schütte, C.; Noe, F., Markov models of molecular kinetics: generation and validation, J. Chem. Phys., 134, 174105 (2011) · doi:10.1063/1.3565032
[25] S. Röblitz, Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität, Berlin, 2008
[26] Rose, G.; Fleming, P.; Banavar, J.; Maritan, A., A backbone-based theory of protein folding, Proc. Natl. Acad. Sci. U. S. A., 103, 45, 16623-16633 (2006) · doi:10.1073/pnas.0606843103
[27] Sarich, M.; Noe, F.; Schütte, C., On the approximation quality of Markov state models, Multiscale Model. Simul., 8, 1154-1177 (2010) · Zbl 1210.60082 · doi:10.1137/090764049
[28] C. Schütte, Conformational dynamics: modelling, theory, algorithm, and application to biomolecules. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1999
[29] Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P., A direct approach to conformational dynamics based on hybrid Monte Carlo, J. Comput. Phys., 151, 146-169 (1999) · Zbl 0933.65145
[30] Shepard, D., A two-dimensional interpolation function for irregularly spaced data, in Proceeding of the 1968 23rd ACM national conference, 517-524 (1968), New York: ACM, New York
[31] Sriraman, S.; Kevrekidis, I.; Hummer, G., Coarse master equation from Bayesian analysis of replica molecular dynamics simulations, J. Phys. Chem. B, 109, 14, 6479-6484 (2005) · doi:10.1021/jp046448u
[32] Stalling, Detlev; Westerhoff, Malte; Hege, Hans-Christian, amira: A Highly Interactive System for Visual Data Analysis, Visualization Handbook, 749-767 (2005)
[33] Swope, W. C.; Pitera, J. W., Describing protein folding kinetics by molecular dynamics simulation. 1. Theory, J. Phys. Chem. B, 108, 6571-6581 (2004)
[34] van Gunsteren, W. F.; Berendsen, H. J.C., Algorithms for macromolecular dynamics and constraint dynamics, Mol. Phys., 34, 1311-1327 (1977) · doi:10.1080/00268977700102571
[35] Wang, J.; Wang, W.; Caldwell, J.; Kollman, P. A.; Case, D. A., Development and testing of a general Amber force field, Comput. Chem., 25, 1157-1174 (2004) · doi:10.1002/jcc.20035
[36] Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model., 25, 247-260 (2006) · doi:10.1016/j.jmgm.2005.12.005
[37] M. Weber, Meshless Methods in Conformation Dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität, Berlin, 2006. Published by Verlag Dr. Hut, München · Zbl 1202.62088
[38] M. Weber, A subspace approach to molecular Markov state models via a new infinitesimal generator. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 2011
[39] M. Weber, W. Rungsarityotin, A. Schliep, An indicator for the number of clusters using a linear map to simplex structure, in From Data and Information Analysis to Knowledge Engineering, Proceedings of the 29th Annual Conference of the Gesellschaft für Klassifikation e.V., Universität Magdeburg, März 2005, ed. by M. Spiliopoulou et al. Studies in Classification, Data Analysis, and Knowledge Organization (Springer, Berlin, Heidelberg, 2006), pp. 103-110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.