Skip to main content

A Meshless Discretization Method for Markov State Models Applied to Explicit Water Peptide Folding Simulations

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VI

Abstract

Markov State Models (MSMs) are widely used to represent molecular conformational changes as jump-like transitions between subsets of the conformational state space. However, the simulation of peptide folding in explicit water is usually said to be unsuitable for the MSM framework. In this article, we summarize the theoretical background of MSMs and indicate that explicit water simulations do not contradict these principles. The algorithmic framework of a meshless conformational space discretization is applied to an explicit water system and the sampling results are compared to a long-term molecular dynamics trajectory. The meshless discretization approach is based on spectral clustering of stochastic matrices (MSMs) and allows for a parallelization of MD simulations. In our example of Trialanine we were able to compute the same distribution of a long term simulation in less computing time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Beberg, V.S. Pande, Folding@home: lessons from eight years of distributed computing, in IEEE Computer Society Los Alamitos, CA, USA (2009), pp. 1–8

    Google Scholar 

  2. H.J.C. Berendsen, J.P.M. Postma, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  Google Scholar 

  3. G.R. Bowman, X. Huang, V.S. Pande Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49(2), 197–201 (2009)

    Article  Google Scholar 

  4. G. Bussi, D. Donadio, M. Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  5. D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  6. C. Chennubhotla, I. Bahar, Markov methods for hierarchical coarse-graining of large protein dynamics. J. Comput. Biol. 14(6),765–776, 2007

    Article  MathSciNet  Google Scholar 

  7. J.D. Chodera, W.C. Swope, J.W. Pitera, K.A. Dill, Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model. Simul. 5(4), 1214–1226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Deuflhard, M. Weber, Robust perron cluster analysis in conformation dynamics, in Linear Algebra and its Applications – Special Issue on Matrices and Mathematical Biology, ed. by M. Dellnitz, S. Kirkland, M. Neumann, C. Schütte, Vol. 398C (Elsevier, Amsterdam, 2005), pp. 161–184

    Google Scholar 

  9. O. Engin, M. Sayar, B. Erman, The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides. Phys. Biol. 6, 016001 (2009)

    Article  Google Scholar 

  10. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8592 (1995)

    Article  Google Scholar 

  11. H. Gohlke, M.F. Thorpe, A natural coarse graining for simulating large biomolecular motion. Biophys. J. 91(6), 2115–2120 (2006)

    Article  Google Scholar 

  12. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics (Springer, Berlin, Heidelberg, 2007)

    MATH  Google Scholar 

  13. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  Google Scholar 

  14. B. Hess, C. Kutzner, D. van der Spoel, E. Indahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  15. H.W. Horn, W.C. Swope, J.W. Pitera, Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. J. Chem. Phys. 123, 194504 (2005)

    Article  Google Scholar 

  16. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006)

    Article  Google Scholar 

  17. W. Huisinga, Metastability of Markovian systems: a transfer operator based approach in application to molecular dynamics. Freie Universität, Berlin, Doctoral Thesis, 2001

    Google Scholar 

  18. A. Jakalian, B.L. Bush, D.B. Jack, C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000)

    Google Scholar 

  19. A. Jakalian, D.B. Jack, C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002)

    Google Scholar 

  20. A.R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, Harlow, 2001)

    Google Scholar 

  21. Y. Mu, G. Stock, Conformational dynamics of trialanine in water: a molecular dynamics study. J. Phys. Chem. B 106, 5294–5301 (2002)

    Article  Google Scholar 

  22. Y. Mu, D. Kosov, G. Stock, Conformational dynamics of trialanine in Water.2 Comparison of AMBER, CHARMM, GROMOS, and OPLS Force Fields to NMR and infrared experiments J. Phys. Chem. B 107, 5064– 5073, (2003)

    Google Scholar 

  23. A. Pan, B. Roux, Building Markov state models along pathways to determine free energies and rates of transitions. J Chem. Phys. 129(6), 064107 (2008)

    Google Scholar 

  24. J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Fischbach, M. Held, J.D. Chodera, C. Schütte, F. Noe, Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011)

    Article  Google Scholar 

  25. S. Röblitz, Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität, Berlin, 2008

    Google Scholar 

  26. G. Rose, P. Fleming, J. Banavar, A. Maritan, A backbone-based theory of protein folding. Proc. Natl. Acad. Sci. U. S. A. 103(45), 16623–16633 (2006)

    Article  Google Scholar 

  27. M. Sarich, F. Noe, C. Schütte, On the approximation quality of Markov state models. Multiscale Model. Simul. 8, 1154–1177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Schütte, Conformational dynamics: modelling, theory, algorithm, and application to biomolecules. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1999

    Google Scholar 

  29. C. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151,146–169, 1999. Special Issue Comp. Biophysics, Academic

    Google Scholar 

  30. D. Shepard, A two-dimensional interpolation function for irregularly spaced data, in Proceeding of the 1968 23rd ACM national conference (ACM, New York, 1968), pp. 517–524

    Google Scholar 

  31. S. Sriraman, I. Kevrekidis, G. Hummer, Coarse master equation from Bayesian analysis of replica molecular dynamics simulations. J. Phys. Chem. B 109(14), 6479–6484 (2005)

    Article  Google Scholar 

  32. D. Stalling, M. Westerhoff, H.-C. Hege. Amira: a highly interactive system for visual data analysis, in The Visualization Handbook, ed. by C.D. Hansen, C.R. Johnson, Chapter 38 (Elsevier, Amsterdam, 2005) pp. 749–767

    Google Scholar 

  33. W.C. Swope, J.W. Pitera, Describing protein folding kinetics by molecular dynamics simulation. 1. Theory. J. Phys. Chem. B 108, 6571–6581 (2004)

    Google Scholar 

  34. W.F. van Gunsteren, H.J.C. Berendsen, Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34, 1311–1327 (1977)

    Article  Google Scholar 

  35. J. Wang, W. Wang, J. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general Amber force field. Comput. Chem. 25, 1157–1174 (2004)

    Article  Google Scholar 

  36. J. Wang, W. Wang, P.A. Kollman, D.A. Case, Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  37. M. Weber, Meshless Methods in Conformation Dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität, Berlin, 2006. Published by Verlag Dr. Hut, München

    Google Scholar 

  38. M. Weber, A subspace approach to molecular Markov state models via a new infinitesimal generator. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 2011

    Google Scholar 

  39. M. Weber, W. Rungsarityotin, A. Schliep, An indicator for the number of clusters using a linear map to simplex structure, in From Data and Information Analysis to Knowledge Engineering, Proceedings of the 29th Annual Conference of the Gesellschaft für Klassifikation e.V., Universität Magdeburg, März 2005, ed. by M. Spiliopoulou et al. Studies in Classification, Data Analysis, and Knowledge Organization (Springer, Berlin, Heidelberg, 2006), pp. 103–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Fackeldey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fackeldey, K., Bujotzek, A., Weber, M. (2013). A Meshless Discretization Method for Markov State Models Applied to Explicit Water Peptide Folding Simulations. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32979-1_9

Download citation

Publish with us

Policies and ethics