×

On the Muskat problem. (English) Zbl 1351.35271

Summary: Of concern is the motion of two fluids separated by a free interface in a porous medium, where the velocities are given by Darcy’s law. We consider the case with and without phase transition. It is shown that the resulting models can be understood as purely geometric evolution laws, where the motion of the separating interface depends in a non-local way on the mean curvature. It turns out that the models are volume preserving and surface area reducing, the latter property giving rise to a Lyapunov function. We show well-posedness of the models, characterize all equilibria, and study the dynamic stability of the equilibria. Lastly, we show that solutions which do not develop singularities exist globally and converge exponentially fast to an equilibrium.

MSC:

35R35 Free boundary problems for PDEs
35R37 Moving boundary problems for PDEs
35B35 Stability in context of PDEs
35K55 Nonlinear parabolic equations
35Q35 PDEs in connection with fluid mechanics
76E17 Interfacial stability and instability in hydrodynamic stability
76S05 Flows in porous media; filtration; seepage
80A22 Stefan problems, phase changes, etc.

References:

[1] D. M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension,, European J. Appl. Math., 15, 597 (2004) · Zbl 1076.76027 · doi:10.1017/S0956792504005662
[2] B. V. Bazaliy, The Muskat problem with surface tension and a nonregular initial interface,, Nonlinear Anal., 74, 6074 (2011) · Zbl 1225.35258 · doi:10.1016/j.na.2011.05.087
[3] L. C. Berselli, Local solvability and turning for the inhomogeneous Muskat problem,, Interfaces Free Bound., 16, 175 (2014) · Zbl 1295.35385 · doi:10.4171/IFB/317
[4] Á. Castro, Breakdown of smoothness for the Muskat problem,, Arch. Ration. Mech. Anal., 208, 805 (2013) · Zbl 1293.35234 · doi:10.1007/s00205-013-0616-x
[5] Á. Castro, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves,, Ann. of Math. (2), 175, 909 (2012) · Zbl 1267.76033 · doi:10.4007/annals.2012.175.2.9
[6] A. Castro, Turning waves and breakdown for incompressible flows,, Proc. Natl. Acad. Sci. USA, 108, 4754 (2011) · Zbl 1256.76019 · doi:10.1073/pnas.1101518108
[7] C. H. A. Cheng, Well-posedness of the Muskat problem with \(H^2\) initial data,, Adv. Math., 286, 32 (2016) · Zbl 1331.35396 · doi:10.1016/j.aim.2015.08.026
[8] P. Constantin, On the global existence for the Muskat problem,, J. Eur. Math. Soc. (JEMS), 15, 201 (2013) · Zbl 1258.35002 · doi:10.4171/JEMS/360
[9] P. Constantin, Global regularity for the 2D Muskat equations with finite slope,, <a href= (2015) · Zbl 1365.76304 · doi:10.1016/j.anihpc.2016.09.001
[10] A. Cordoba, The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces,, Proc. Natl. Acad. Sci. USA, 106, 10955 (2009) · Zbl 1203.76059 · doi:10.1073/pnas.0809874106
[11] A. Córdoba, Interface evolution: The Hele-Shaw and Muskat problems,, Ann. of Math. (2), 173, 477 (2011) · Zbl 1229.35204 · doi:10.4007/annals.2011.173.1.10
[12] D. Córdoba, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities,, Comm. Math. Phys., 273, 445 (2007) · Zbl 1120.76064 · doi:10.1007/s00220-007-0246-y
[13] D. Córdoba, A note on stability shifting for the Muskat problem,, Philos. Trans. A, 373 (2015) · Zbl 1353.76084 · doi:10.1098/rsta.2014.0278
[14] D. Córdoba, A note on stability shifting for the Muskat problem II: Stable to unstable and back to stable,, <a href= (2015)
[15] D. Córdoba Gazolaz, The confined Muskat problem: differences with the deep water regime,, Commun. Math. Sci., 12, 423 (2014) · Zbl 1301.35102 · doi:10.4310/CMS.2014.v12.n3.a2
[16] M. Ehrnström, Steady-state fingering patterns for a periodic Muskat problem,, Methods Appl. Anal., 20, 33 (2013) · Zbl 1291.34042 · doi:10.4310/MAA.2013.v20.n1.a2
[17] J. Escher, A generalized Rayleigh-Taylor condition for the Muskat problem,, Nonlinearity, 25, 73 (2012) · Zbl 1243.35179 · doi:10.1088/0951-7715/25/1/73
[18] J. Escher, On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results,, Z. Anal. Anwend., 30, 193 (2011) · Zbl 1223.35199 · doi:10.4171/ZAA/1431
[19] J. Escher, The domain of parabolicity for the Muskat problem,, arXiv:1507.02601 (2015)
[20] J. Escher, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143, 267 (1998) · Zbl 0896.35142 · doi:10.1006/jdeq.1997.3373
[21] A. Friedman, Nonlinear stability of the Muskat problem with capillary pressure at the free boundary,, Nonlinear Anal., 53, 45 (2003) · Zbl 1028.35123 · doi:10.1016/S0362-546X(02)00286-9
[22] J. Hong, Muskat problem with surface tension,, J. Partial Differential Equations, 10, 213 (1997) · Zbl 0884.35176
[23] M. Köhne, On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces,, J. Evol. Equ., 10, 443 (2010) · Zbl 1239.35075 · doi:10.1007/s00028-010-0056-0
[24] M. Muskat, Two fluid systems in porous media. The encroachment of water into an oil sand,, Physics, 5, 250 (1934) · JFM 60.1388.01 · doi:10.1063/1.1745259
[25] M. Muskat, <em>The Flow of Homogeneous Fluids Through Porous Media</em>,, McGraw-Hill (1937) · JFM 63.1368.03
[26] J. Prüss, On the manifold of closed hypersurfaces in \(\mathbb R^n\),, Discrete Cont. Dyn. Sys. A, 33, 5407 (2013) · Zbl 1274.35434 · doi:10.3934/dcds.2013.33.5407
[27] J. Prüss, <em>Moving Interfaces and Quasilinear Parabolic Evolution Equations</em>, Monographs in Mathematics, 105,, Birkhäuser (2016) · Zbl 1435.35004
[28] J. Prüss, The Verigin problem with and without phase transition,, Submitted (2016)
[29] M. Siegel, Global existence, singular solutions, and ill-posedness for the Muskat problem,, Comm. Pure Appl. Math., 57, 1374 (2004) · Zbl 1062.35089 · doi:10.1002/cpa.20040
[30] F. Yi, Local classical solution of Muskat free boundary problem,, J. Partial Differential Equations, 9, 84 (1996) · Zbl 0847.35152
[31] F. Yi, Global classical solution of Muskat free boundary problem,, J. Math. Anal. Appl., 288, 442 (2003) · Zbl 1038.35083 · doi:10.1016/j.jmaa.2003.09.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.