×

Anderson localization for the unitary almost Mathieu operator. (English) Zbl 07885182

Summary: We prove Anderson localization for all Diophantine frequencies and all non-resonant phases for a model that arises from a 2D quantum walk model subject to an external magnetic field, also known as the unitary almost Mathieu operator. Our work provides the first localization results for all Diophantine frequencies in quasi-periodic quantum walk and CMV matrix setting. We also obtain sharp asymptotics of the localized eigenfunctions.
{© The Author(s). Published by IOP Publishing Ltd and the London Mathematical Society}

MSC:

47-XX Operator theory

References:

[1] Aharonov, Y.; Davidovich, L.; Zagury, N., Quantum random walks, Phys. Rev. A, 48, 1687, 1993 · doi:10.1103/PhysRevA.48.1687
[2] Ambainis, A., Quantum walk algorithm for element distinctness, SIAM J. Comput., 37, 210-39, 2007 · Zbl 1134.81010 · doi:10.1137/S0097539705447311
[3] Ahlbrecht, A.; Scholz, V. B.; Werner, A. H., Disordered quantum walks in one lattice dimension, J. Math. Phys., 52, 2011 · Zbl 1272.81036 · doi:10.1063/1.3643768
[4] Avila, A., Global theory of one-frequency Schrödinger operators, Acta Math., 215, 1-54, 2015 · Zbl 1360.37072 · doi:10.1007/s11511-015-0128-7
[5] Avila, A.; Jitomirskaya, S., The ten martini problem, Ann. Math., 170, 303-42, 2009 · Zbl 1166.47031 · doi:10.4007/annals.2009.170.303
[6] Avila, A.; Jitomirskaya, S., Almost localization and almost reducibility, J. Eur. Math. Soc., 12, 93-131, 2010 · Zbl 1185.47028 · doi:10.4171/jems/191
[7] Avila, A.; Jitomirskaya, S., Hölder continuity of absolutely continuous spectral measures for one-frequency Schrödinger operators, Commun. Math. Phys., 301, 563-81, 2011 · Zbl 1215.47025 · doi:10.1007/s00220-010-1147-z
[8] Avila, A.; You, J.; Zhou, Q., Sharp phase transitions for the almost Mathieu operator, Duke Math. J., 166, 2697-718, 2017 · Zbl 1503.47041 · doi:10.1215/00127094-2017-0013
[9] Berezansky, Y. M., Expansions in Eigenfunctions of Selfadjoint Operators, 1968, American Mathematical Society · Zbl 0157.16601
[10] Bourgain, J., Anderson localization for quasi-periodic lattice Schrödinger operators on, d arbitrary, GAFA Geom. Funct. Anal., 17, 682-706, 2007 · Zbl 1152.82311 · doi:10.1007/s00039-007-0610-2
[11] Bourgain, J.; Goldstein, M., On nonperturbative localization with quasi-periodic potential, Ann. Math., 152, 835-79, 2000 · Zbl 1053.39035 · doi:10.2307/2661356
[12] Bourgain, J.; Goldstein, M.; Schlag, W., Anderson localization for Schrödinger operators on \(\mathbb{Z}\) with potentials given by the Skew-Shift, Commun. Math. Phys., 220, 583-621, 2001 · Zbl 0994.82044 · doi:10.1007/PL00005570
[13] Bourgain, J.; Goldstein, M.; Schlag, W., Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential, Acta Math., 188, 41-86, 2002 · Zbl 1022.47023 · doi:10.1007/BF02392795
[14] Bourgain, J.; Grünbaum, F. A.; Velázquez, L.; Wilkening, J., Quantum recurrence of a subspace and operator-valued Schur functions, Commun. Math. Phys., 329, 1031-67, 2014 · Zbl 1296.37014 · doi:10.1007/s00220-014-1929-9
[15] Cantero, M. J.; Moral, L.; Grünbaum, F. A.; Velázquez, L., Matrix valued Szegö polynomials and quantum random walks, Commun. Pure Appl. Math., 63, 464-507, 2010 · Zbl 1186.81036 · doi:10.1002/cpa.20312
[16] Cedzich, C.; Fillman, J., Absence of bound states for quantum walks and CMV matrices via reflections, 2024
[17] Cedzich, C.; Fillman, J.; Ong, D. C., Almost everything about the unitary almost Mathieu operator, Commun. Math. Phys., 403, 745-94, 2023 · Zbl 1539.47080 · doi:10.1007/s00220-023-04808-4
[18] Cedzich, C.; Rybár, T.; Werner, A. H.; Alberti, A.; Genske, M.; Werner, R. F., Propagation of quantum walks in electric fields, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.160601
[19] Cedzich, C.; Werner, A. H., Anderson localization for electric quantum walks and Skew-Shift CMV matrices, Commun. Math. Phys., 387, 1257-79, 2021 · Zbl 1484.82043 · doi:10.1007/s00220-021-04204-w
[20] Damanik, D.; Fillman, J.; Lukic, M.; Yessen, W., Characterizations of uniform hyperbolicity and spectra of CMV matrices, Discrete Contin. Dyn. Syst. S, 9, 1009, 2016 · Zbl 1366.37077 · doi:10.3934/dcdss.2016039
[21] Damanik, D.; Fillman, J.; Ong, D. C., Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices, J. Math. Pures Appl., 105, 293-341, 2016 · Zbl 1332.81066 · doi:10.1016/j.matpur.2015.11.002
[22] Fillman, J.; Ong, D. C.; Zhang, Z., Spectral characteristics of the unitary critical almost-Mathieu operator, Commun. Math. Phys., 351, 525-61, 2017 · Zbl 06702035 · doi:10.1007/s00220-016-2775-8
[23] Furman, A., On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. Henri Poincare B, 33, 797-815, 1997 · Zbl 0892.60011 · doi:10.1016/S0246-0203(97)80113-6
[24] Genske, M.; Alt, W.; Steffen, A.; Werner, A. H.; Werner, R. F.; Meschede, D.; Alberti, A., Electric quantum walks with individual atoms, Phys. Rev. Lett., 110, 2013 · doi:10.1103/PhysRevLett.110.190601
[25] Germinet, F.; Jitomirskaya, S., Strong dynamical localization for the almost Mathieu model, Rev. Math. Phys., 13, 755-65, 2001 · Zbl 1029.81026 · doi:10.1142/S0129055X01000855
[26] Gesztesy, F.; Zinchenko, M., Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle, J. Approx. Theory, 139, 172-213, 2006 · Zbl 1118.47023 · doi:10.1016/j.jat.2005.08.002
[27] Hamza, E.; Joye, A., Spectral transition for random quantum walks on trees, Commun. Math. Phys., 326, 415-39, 2014 · Zbl 1285.82045 · doi:10.1007/s00220-014-1882-7
[28] Han, R., Dry Ten Martini problem for the non-self-dual extended Harper’s model, Trans. Am. Math. Soc., 370, 197-217, 2018 · Zbl 06801940 · doi:10.1090/tran/6989
[29] Han, R., Shnol’s theorem and the spectrum of long range operators, vol 147, pp 2887-97, 2019 · Zbl 07073444
[30] Han, R.; Jitomirskaya, S.; Yang, F., Anti-resonances and sharp analysis of Maryland localization for all parameters, 2022
[31] Han, R.; Schlag, W., Avila’s acceleration via zeros of determinants, and applications to Schrödinger cocycles, 2022
[32] Han, R.; Wilhelm, S., Non-perturbative localization on the strip and Avila’s almost reducibility conjecture, 2023
[33] Han, R.; Wilhelm, S., Non-perturbative localization for quasi-periodic Jacobi block matrices, 2023
[34] Hamza, E.; Joye, A.; Stolz, G., Localization for random unitary operators, Lett. Math. Phys., 75, 255-72, 2006 · Zbl 1101.82014 · doi:10.1007/s11005-005-0044-4
[35] Herman, M. R., Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractere local d’un théoreme d’Arnold et de Moser sur le tore de dimension 2, Comm. Math. Helv., 58, 453-502, 1983 · Zbl 0554.58034 · doi:10.1007/BF02564647
[36] Jitomirskaya, S. Y., Metal-insulator transition for the almost Mathieu operator, Ann. Math., 150, 1159-75, 1999 · Zbl 0946.47018 · doi:10.2307/121066
[37] Jitomirskaya, S.; Koslover, D. A.; Schulteis, M. S., Localization for a family of one-dimensional quasiperiodic operators of magnetic origin, Ann. Henri Poincare, 6, 103-24, 2005 · Zbl 1062.81029 · doi:10.1007/s00023-005-0200-5
[38] Jitomirskaya, S.; Liu, W., Universal hierarchical structure of quasiperiodic eigenfunctions, Ann. Math., 187, 721-76, 2018 · Zbl 1470.47025 · doi:10.4007/annals.2018.187.3.3
[39] Jitomirskaya, S.; Liu, W., universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase, J. Eur. Math. Soc., 26, 2797-836, 2023 · Zbl 07875499 · doi:10.4171/JEMS/1325
[40] Jitomirskaya, S.; Mavi, R., Dynamical bounds for quasiperiodic Schrödinger operators with rough potentials, Int. Math. Res. Not., 1, 96-120, 2017 · Zbl 1405.35175 · doi:10.1093/imrn/rnw022
[41] Jitomirskaya, S.; Simon, B., Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators, Commun. Math. Phys., 165, 201-5, 1994 · Zbl 0830.34074 · doi:10.1007/BF02099743
[42] Jitomirskaya, S.; Yang, F., Pure point spectrum for the Maryland model: a constructive proof, Ergod. Theory Dyn. Syst., 41, 283-94, 2021 · Zbl 1456.37053 · doi:10.1017/etds.2019.50
[43] Joye, A., Dynamical localization for d-dimensional random quantum walks, Quantum Inf. Process., 11, 1251-69, 2012 · Zbl 1252.82087 · doi:10.1007/s11128-012-0406-7
[44] Joye, A.; Merkli, M., Dynamical localization of quantum walks in random environments, J. Stat. Phys., 140, 1025-53, 2010 · Zbl 1296.82052 · doi:10.1007/s10955-010-0047-0
[45] Klein, S., Anderson localization for one-frequency quasi-periodic block Jacobi operators, J. Funct. Anal., 273, 1140-64, 2017 · Zbl 1369.82024 · doi:10.1016/j.jfa.2017.04.017
[46] Konno, N., Quantum Potential Theory, Quantum walks, pp 309-452, 2008, Springer · Zbl 1329.82011
[47] Khinchin, A. I.; Eagle, H., Continued Fractions, 1997, Dover
[48] Krüger, H., Orthogonal polynomials on the unit circle with Verblunsky coefficients defined by the skew-shift, Int. Math. Res. Not., 2013, 4135-69, 2013 · Zbl 1329.33011 · doi:10.1093/imrn/rns173
[49] Portugal, R., Quantum Walks and Search Algorithms, pp 23-30, 2013, Springer · Zbl 1275.81004
[50] Puig, J., Cantor spectrum for the almost Mathieu operator, Commun. Math. Phys., 244, 297-309, 2004 · Zbl 1075.39021 · doi:10.1007/s00220-003-0977-3
[51] Sajid, M.; Asbóth, J. K.; Meschede, D.; Werner, R. F.; Alberti, A., Creating anomalous Floquet Chern insulators with magnetic quantum walks, Phys. Rev. B, 99, 2019 · doi:10.1103/PhysRevB.99.214303
[52] Simon, B., CMV matrices: five years after, J. Comput. Appl. Math., 208, 120-54, 2007 · Zbl 1125.15027 · doi:10.1016/j.cam.2006.10.033
[53] Simon, B., Orthogonal Polynomials on the Unit Circle (AMS Colloquium Series), vol 1, 2005, American Mathematical Society · Zbl 1082.42020
[54] Simon, B., Orthogonal Polynomials on the Unit Circle (AMS Colloquium Series), vol 2, 2005, American Mathematical Society · Zbl 1082.42020
[55] Wang, F., A formula related to CMV matrices and Szegö cocycles, J. Math. Anal. Appl., 464, 304-16, 2018 · Zbl 1419.33004 · doi:10.1016/j.jmaa.2018.04.007
[56] Wang, F.; Damanik, D., Anderson localization for quasi-periodic CMV matrices and quantum walks, J. Funct. Anal., 276, 1978-2006, 2019 · Zbl 1462.35316 · doi:10.1016/j.jfa.2018.10.016
[57] Wójcik, A.; Łuczak, T.; Kurzyński, P.; Grudka, A.; Bednarska, M., Quasiperiodic dynamics of a quantum walk on the line, Phys. Rev. Lett., 93, 2004 · doi:10.1103/PhysRevLett.93.180601
[58] Yang, F., Spectral transition line for the extended Harper’s model in the positive Lyapunov exponent regime, J. Funct. Anal., 275, 712-34, 2018 · Zbl 1390.81768 · doi:10.1016/j.jfa.2017.12.010
[59] Zhu, X., Localization for random CMV matrices, J. Approx. Theory, 298, 2024 · Zbl 1534.42032 · doi:10.1016/j.jat.2023.106008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.