×

Spectral transition line for the extended Harper’s model in the positive Lyapunov exponent regime. (English) Zbl 1390.81768

Summary: We study the spectral transition line of the extended Harper’s model in the positive Lyapunov exponent regime. We show that both pure point spectrum and purely singular continuous spectrum occur for dense subsets of frequencies on the transition line.

MSC:

81V70 Many-body theory; quantum Hall effect
82D20 Statistical mechanics of solids
78A25 Electromagnetic theory (general)
34D08 Characteristic and Lyapunov exponents of ordinary differential equations

References:

[1] Avila, A.; Fayad, B.; Krikorian, R., A KAM scheme for \(SL(2, R)\) cocycles with Liouvillian frequencies, Geom. Funct. Anal., 21, 1001-1019 (2011) · Zbl 1277.37089
[2] Avila, A.; Jitomirskaya, S.; Marx, C., Spectral theory of extended Harper’s model and a question by Erdös and Szekeres, Invent. Math., 210, 1, 283-339 (2017) · Zbl 1380.37019
[3] Avila, A.; Jitomirskaya, S.; Zhou, Q., Second phase transition line, Math. Ann. (2017)
[4] Avila, A.; You, J.; Zhou, Q., Sharp phase transitions for the almost Mathieu operator, Duke Math. J., 166, 14, 2697-2718 (2017) · Zbl 1503.47041
[5] Drese, K.; Holthaus, M., Phase diagram for a modified Harper model, Phys. Rev. B, 55, 22, Article R14693 pp. (1997)
[6] Han, J. H.; Thouless, D. J.; Hiramoto, H.; Kohmoto, M., Critical and bicritical properties of Harper’s equation with next-nearest-neighbor coupling, Phys. Rev. B, 50, 16, Article 11365 pp. (1994)
[7] Han, R., Dry ten martini problem for the non-self-dual extended Harper’s model, Trans. Amer. Math. Soc., 370, 1, 197-217 (2018) · Zbl 06801940
[8] Han, R., Absence of point spectrum for the self-dual extended Harper’s model, Int. Math. Res. Not., Article rnw279 pp. (2017)
[9] Han, R.; Jitomirskaya, S., Full measure reducibility and localization for quasi-periodic Jacobi operators: a topological criterion, Adv. Math., 319, 224-250 (2017) · Zbl 06776225
[10] Herman, M. R., Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractere local d’un théoreme d’Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv., 58, 1, 453-502 (1983) · Zbl 0554.58034
[11] Hou, X.; You, J., Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., 190, 1, 209-260 (2012) · Zbl 1294.37027
[12] Jitomirskaya, S., Almost everything about the almost Mathieu operator, II, (Proceedings of XI International Congress of Mathematical Physics (1995), Int. Press), 373-382 · Zbl 1052.82539
[13] Jitomirskaya, S.; Koslover, D. A.; Schulteis, M. S., Localization for a family of one-dimensional quasi-periodic operators of magnetic origin, Ann. Henri Poincaré, 6, 103-124 (2005) · Zbl 1062.81029
[14] Jitomirskaya, S.; Liu, W., Arithmetic spectral transitions for the Maryland model, Comm. Pure Appl. Math., 70, 6, 1025-1051 (2017) · Zbl 06734215
[15] Jitomirskaya, S.; Liu, W., Universal hierarchical structure of quasiperiodic eigenfunctions, Ann. of Math. (2018), forthcoming · Zbl 1470.47025
[16] S. Jitomirskaya, W. Liu, Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transitions in phase, Preprint.; S. Jitomirskaya, W. Liu, Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transitions in phase, Preprint.
[17] Jitomirskaya, S.; Marx, C. A., Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model, Comm. Math. Phys., 316, 237-267 (2012) · Zbl 1277.37007
[18] Johnson, R.; Moser, J., The rotation number for almost periodic potentials, Comm. Math. Phys., 84, 3, 403-438 (1982) · Zbl 0497.35026
[19] Thouless, D. J., Bandwidth for a quasiperiodic tight binding model, Phys. Rev. B, 28, 4272-4276 (1983)
[20] You, J.; Zhou, Q., Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications, Comm. Math. Phys., 323, 975-1005 (2013) · Zbl 1286.37004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.