×

Dynamical localization of quantum walks in random environments. (English) Zbl 1296.82052

Summary: The dynamics of a one dimensional quantum walker on the lattice with two internal degrees of freedom, the coin states, is considered. The discrete time unitary dynamics is determined by the repeated action of a coin operator in \(U(2)\) on the internal degrees of freedom followed by a one step shift to the right or left, conditioned on the state of the coin. For a fixed coin operator, the dynamics is known to be ballistic.
We prove that when the coin operator depends on the position of the walker and is given by a certain i.i.d. random process, the phenomenon of Anderson localization takes place in its dynamical form. When the coin operator depends on the time variable only and is determined by an i.i.d. random process, the averaged motion is known to be diffusive and we compute the diffusion constants for all moments of the position.

MSC:

82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60K37 Processes in random environments
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics

References:

[1] Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687-1690 (1993) · doi:10.1103/PhysRevA.48.1687
[2] Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245-278 (1993) · Zbl 0782.60044 · doi:10.1007/BF02099760
[3] Ambainis, A., Aharonov, D., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of 33rd ACM STOC, pp. 50-59 (2001) · Zbl 1323.81020
[4] Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of SODA’05, pp. 1099-1108 (2005) · Zbl 1297.68076
[5] Ao, P.: Absence of localization in energy space of a Bloch electron driven by a constant electric force. Phys. Rev. B 41, 3998-4001 (1989) · doi:10.1103/PhysRevB.41.3998
[6] Asch, J., Duclos, P., Exner, P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys. 92, 1053-1070 (1998) · Zbl 1079.81518 · doi:10.1023/A:1023000828437
[7] Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) · Zbl 0172.21201
[8] Bougerol, O., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser Progress in Probability and Statistics. Birkhäuser, Basel (1985) · Zbl 0572.60001 · doi:10.1007/978-1-4684-9172-2
[9] Bourget, O., Howland, J.S., Joye, A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191-227 (2003) · Zbl 1029.47016 · doi:10.1007/s00220-002-0751-y
[10] Blatter, G., Browne, D.: Zener tunneling and localization in small conducting rings. Phys. Rev. B 37, 3856 (1988) · doi:10.1103/PhysRevB.37.3856
[11] Cantero, M.J., Grünbaum, F.A., Morales, L., Velàzquez, L.: Matrix valued Szegö polynomials and quantum random walks. Commun. Pure Appl. Math. 63, 464-507 (2009) · Zbl 1186.81036
[12] Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41-66 (1987) · Zbl 0615.60098 · doi:10.1007/BF01210702
[13] Chen, A., Renshaw, E.: The Gillis-Domb-Fisher correlated random walk. J. Appl. Probab. 29, 792-813 (1992) · Zbl 0768.60058 · doi:10.2307/3214713
[14] de Oliveira, C.R., Simsen, M.S.: A Floquet operator with purely point spectrum and energy instability. Ann. Henri Poincaré 7, 1255-1277 (2008) · Zbl 1135.81015
[15] Hamza, E.: Localization properties for the unitary Anderson model. PhD thesis, University of Alabama at Birmingham (2007). http://www.mhsl.uab.edu/dt/2008r/hamza.pdf · Zbl 1176.81054
[16] Hamza, E., Stolz, G.: Lyapunov exponents for unitary Anderson models. J. Math. Phys. 48, 043301 (2007) · Zbl 1137.82315 · doi:10.1063/1.2713996
[17] Hamza, E., Joye, A., Stolz, G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12, 381-444 (2009) · Zbl 1186.82045 · doi:10.1007/s11040-009-9068-9
[18] Joye, A.: Fractional moment estimates for random unitary operators. Lett. Math. Phys. 72(1), 51-64 (2005) · Zbl 1115.82018 · doi:10.1007/s11005-005-3256-8
[19] Karski, M., Förster, L., Chioi, J.M., Streffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174-177 (2009) · doi:10.1126/science.1174436
[20] Keating, J.P., Linden, N., Matthews, J.C.F., Winter, A.: Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 76, 012315 (2007) · doi:10.1103/PhysRevA.76.012315
[21] Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307-327 (2003) · doi:10.1080/00107151031000110776
[22] Konno, N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf. Process. 8, 387-399 (2009) · Zbl 1176.81054 · doi:10.1007/s11128-009-0116-y
[23] Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. (to appear) · Zbl 1196.82087
[24] Konno, N.; Schürmann, F. (ed.), Quantum walks, No. 1954, 309-452 (2009), Berlin · Zbl 1329.82011 · doi:10.1007/978-3-540-69365-9_7
[25] Kos’k, J., Buzek, V., Hillery, M.: Quantum walks with random phase shifts. Phys. Rev. A 74, 022310 (2006) · doi:10.1103/PhysRevA.74.022310
[26] Lenstra, D., van Haeringen, W.: Elastic scattering in a normal-metal loop causing resistive electronic behavior. Phys. Rev. Lett. 57, 1623-1626 (1986) · doi:10.1103/PhysRevLett.57.1623
[27] Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. In: 20th SODA, pp. 86-95 (2009) · Zbl 1236.68072
[28] Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551-574 (1996) · Zbl 0952.37501 · doi:10.1007/BF02199356
[29] Renshaw, E., Henderson, R.: The correlated random walk. J. Appl. Probab. 18, 403-414 (1981) · Zbl 0479.60071 · doi:10.2307/3213286
[30] Ryu, J.-W., Hur, G., Kim, S.W.: Quantum localization in open chaotic systems. Phys. Rev. E 037201 (2008) · Zbl 1079.81518
[31] Santha, M., Quantum walk based search algorithms, No. 4978, 31-46 (2008), Berlin · Zbl 1139.68338
[32] Shapira, D., Biham, O., Bracken, A.J., Hackett, M.: One dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 (2003) · doi:10.1103/PhysRevA.68.062315
[33] Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003) · doi:10.1103/PhysRevA.67.052307
[34] Yin, Y., Katsanos, D.E., Evangelou, S.N.: Quantum walks on a random environment. Phys. Rev. A 77, 022302 (2008) · doi:10.1103/PhysRevA.77.022302
[35] Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. arXiv:0911.1876v1 [quant-ph]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.