×

Gappy AE: a nonlinear approach for gappy data reconstruction using auto-encoder. (English) Zbl 1539.65104

Summary: We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65F55 Numerical methods for low-rank matrix approximation; matrix compression
68T09 Computational aspects of data analysis and big data

References:

[1] Carlberg, K.; Choi, Y.; Sargsyan, S., Conservative model reduction for finite-volume models, J. Comput. Phys., 371, 280-314, 2018 · Zbl 1415.65208
[2] Choi, Y.; Oxberry, G.; White, D.; Kirchdoerfer, T., Accelerating design optimization using reduced order models, 2019, arXiv:1909.11320
[3] Choi, Y.; Boncoraglio, G.; Anderson, S.; Amsallem, D.; Farhat, C., Gradient-based constrained optimization using a database of linear reduced-order models, J. Comput. Phys., 423, Article 109787 pp., 2020 · Zbl 07508406
[4] Choi, Y.; Coombs, D.; Anderson, R., Sns: A solution-based nonlinear subspace method for time-dependent model order reduction, SIAM J. Sci. Comput., 42, 2, A1116-A1146, 2020 · Zbl 1442.37111
[5] Copeland, D. M.; Cheung, S. W.; Huynh, K.; Choi, Y., Reduced order models for Lagrangian hydrodynamics, Comput. Methods Appl. Mech. Engrg., 388, Article 114259 pp., 2022 · Zbl 1507.76179
[6] Cheung, S. W.; Choi, Y.; Copeland, D. M.; Huynh, K., Local Lagrangian reduced-order modeling for the Rayleigh-Taylor instability by solution manifold decomposition, J. Comput. Phys., 472, Article 111655 pp., 2023 · Zbl 07620355
[7] Lee, K.; Carlberg, K. T., Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys., 404, Article 108973 pp., 2020 · Zbl 1454.65184
[8] Kim, Y.; Choi, Y.; Widemann, D.; Zohdi, T., A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, J. Comput. Phys., 451, Article 110841 pp., 2022 · Zbl 07517153
[9] Kim, Y.; Choi, Y.; Widemann, D.; Zohdi, T., Efficient nonlinear manifold reduced order model, 2020, arXiv:2011.07727
[10] Diaz, A. N.; Choi, Y.; Heinkenschloss, M., A fast and accurate domain-decomposition nonlinear manifold reduced order model, 2023, arXiv:2305.15163
[11] McBane, S.; Choi, Y., Component-wise reduced order model lattice-type structure design, Comput. Methods Appl. Mech. Engrg., 381, Article 113813 pp., 2021 · Zbl 1506.74290
[12] McBane, S.; Choi, Y.; Willcox, K., Stress-constrained topology optimization of lattice-like structures using component-wise reduced order models, Comput. Methods Appl. Mech. Engrg., 400, Article 115525 pp., 2022 · Zbl 1507.74323
[13] Choi, Y.; Carlberg, K., Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction, SIAM J. Sci. Comput., 41, 1, A26-A58, 2019 · Zbl 1405.65140
[14] Choi, Y.; Brown, P.; Arrighi, B.; Anderson, R.; Huynh, K., Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems, J. Comput. Phys., Article P109845 pp., 2020
[15] Kim, Y.; Wang, K.; Choi, Y., Efficient space-time reduced order model for linear dynamical systems in python using less than 120 lines of code, Mathematics, 9, 14, 1690, 2021
[16] Taddei, T.; Zhang, L., Space-time registration-based model reduction of parameterized one-dimensional hyperbolic pdes, ESAIM Math. Model. Numer. Anal., 55, 1, 99-130, 2021 · Zbl 1477.65248
[17] Romor, F.; Stabile, G.; Rozza, G., Non-linear manifold reduced-order models with convolutional autoencoders and reduced over-collocation method, J. Sci. Comput., 94, 3, 74, 2023 · Zbl 07698834
[18] Cocola, J.; Tencer, J.; Rizzi, F.; Parish, E.; Blonigan, P., Hyper-reduced autoencoders for efficient and accurate nonlinear model reductions, 2023, arXiv preprint arXiv:2303.09630
[19] Fries, W. D.; He, X.; Choi, Y., Lasdi: Parametric latent space dynamics identification, Comput. Methods Appl. Mech. Engrg., 399, Article 115436 pp., 2022 · Zbl 1507.65078
[20] He, X.; Choi, Y.; Fries, W. D.; Belof, J. L.; Chen, J.-S., glasdi: Parametric physics-informed greedy latent space dynamics identification, J. Comput. Phys., 489, Article 112267 pp., 2023 · Zbl 07705908
[21] Bonneville, C.; Choi, Y.; Ghosh, D.; Belof, J. L., Gplasdi: Gaussian process-based interpretable latent space dynamics identification through deep autoencoder, Comput. Methods Appl. Mech. Engrg., 418, Article 116535 pp., 2024 · Zbl 1539.65085
[22] Everson, R.; Sirovich, L., Karhunen-loeve procedure for gappy data, J. Opt. Soc. Amer. A, 12, 8, 1657-1664, 1995
[23] Willcox, K., Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition, Comput. & Fluids, 35, 2, 208-226, 2006 · Zbl 1160.76394
[24] Ohlberger, M.; Rave, S., Reduced basis methods: success, limitations and future challenges, 2016, arXiv:1511.02021
[25] Greif, C.; Urban, K., Decay of the kolmogorov n-width for wave problems, Appl. Math. Lett., 96, 216-222, 2019 · Zbl 1423.35242
[26] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28, 2010 · Zbl 1197.76091
[27] Kutz, J. N.; Brunton, S. L.; Brunton, B. W.; Proctor, J. L., Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, 2016, SIAM · Zbl 1365.65009
[28] Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G. E., Physics-informed neural networks (pinns) for fluid mechanics: A review, Acta Mech. Sin., 37, 12, 1727-1738, 2021
[29] Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks for heat transfer problems, J. Heat Transfer, 143, 6, Article 060801 pp., 2021
[30] Cuomo, S.; Cola, V. S.D.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F., Scientific machine learning through physics-informed neural networks: Where we are and what’s next, J. Sci. Comput., 92, 3, 88, 2022 · Zbl 07568980
[31] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707, 2019 · Zbl 1415.68175
[32] Gundersen, K.; Oleynik, A.; Blaser, N.; Alendal, G., Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations, Phys. Fluids, 33, 1, 2021
[33] Nair, N. J.; Goza, A., Leveraging reduced-order models for state estimation using deep learning, J. Fluid Mech., 897, R1, 2020 · Zbl 1460.76174
[34] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 1, 539-575, 1993
[35] Hotelling, H., Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 6, 417, 1933 · JFM 59.1182.04
[36] Loeve, M., Probability Theory, 1955, D. Van Nostrand: D. Van Nostrand New York · Zbl 0066.10903
[37] Hinze, M.; Volkwein, S., Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control, (Dimension Reduction of Large-Scale Systems, 2005, Springer), 261-306 · Zbl 1079.65533
[38] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 2, 492-515, 2002 · Zbl 1075.65118
[39] Mckay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42, 1, 55-61, 2000
[40] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764, 2010 · Zbl 1217.65169
[41] Drmac, Z.; Gugercin, S., A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions, SIAM J. Sci. Comput., 38, 2, A631-A648, 2016 · Zbl 1382.65193
[42] Drmac, Z.; Saibaba, A. K., The discrete empirical interpolation method: Canonical structure and formulation in weighted inner product spaces, SIAM J. Matrix Anal. Appl., 39, 3, 1152-1180, 2018 · Zbl 1415.65107
[43] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The gnat method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647, 2013 · Zbl 1299.76180
[44] Shin, Y.; Xiu, D., Nonadaptive quasi-optimal points selection for least squares linear regression, SIAM J. Sci. Comput., 38, 1, A385-A411, 2016 · Zbl 06548919
[45] Lauzon, J. T.; Cheung, S. W.; Shin, Y.; Choi, Y.; Copeland, D. M.; Huynh, K., S-opt: A points selection algorithm for hyper-reduction in reduced order models, 2022, arXiv:2203.16494
[46] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 2, 155-181, 2011 · Zbl 1235.74351
[47] Choi, Y.; Arrighi, W. J.; Copeland, D. M.; Anderson, R. W.; Oxberry, G. M., librom, 2019, [Computer Software]
[48] Kim, Y.; Choi, Y.; Yoo, B., Appendix: gappy data reconstruction using unsupervised learning for digital twin, 2023
[49] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, T.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: A modular finite element methods library, Comput. Math. Appl., 81, 42-74, 2021 · Zbl 1524.65001
[50] MFEM: Modular finite element methods [Software], https://mfem.org, http://dx.doi.org/10.11578/dc.20171025.1248.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.