×

Deterministic genericity for polynomial ideals. (English) Zbl 1446.13021

The authors deal, mainly from the algorithmic point of view, with the notion of genericity in the frame of commutative algebra, and more precisely in relation to polynomial ideals. More specifically, the paper emphasizes on generic positions related to Gröbner bases. For this purpose, the authors define several stability notions using combinatorial descriptions. Algorithms for obtaining generic positions are provided.

MSC:

13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
68W30 Symbolic computation and algebraic computation
13-04 Software, source code, etc. for problems pertaining to commutative algebra

References:

[1] Albert, M., Computing Quot Schemes (2017), Fachbereich Mathematik und Naturwissenschaften, Universität Kassel, PhD thesis
[2] Aramova, A.; Herzog, J., Almost regular sequences and Betti numbers, Am. J. Math., 122, 689-719 (2000) · Zbl 1012.13008
[3] Bayer, D.; Stillman, M., A criterion for detecting \(m\)-regularity, Invent. Math., 87, 1-11 (1987) · Zbl 0625.13003
[4] Bayer, D.; Stillman, M., A theorem on refining division orders by the reverse lexicographic orders, Duke J. Math., 55, 321-328 (1987) · Zbl 0638.06003
[5] Bermejo, I.; Gimenez, P., Computing the Castelnuovo-Mumford regularity of some subschemes of \(P_K^n\) using quotients of monomial ideals, J. Pure Appl. Algebra, 164, 23-33 (2001) · Zbl 0989.13008
[6] Bermejo, I.; Gimenez, P., Saturation and Castelnuovo-Mumford regularity, J. Algebra, 303, 592-617 (2006) · Zbl 1105.13010
[7] Binaei, B.; Hashemi, A.; Seiler, W. M., Improved computation of involutive bases, (Gerdt, V. P.; Koepf, W.; Seiler, W. M.; Vorozhtsov, E. V., Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC 2016. Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC 2016, Lecture Notes in Computer Science, vol. 9890 (2016), Springer-Verlag: Springer-Verlag Chaim), 57-71 · Zbl 1453.13074
[8] Caviglia, G., Koszul Algebras, Castelnuovo-Mumford Regularity, and Generic Initial Ideals (2004), University of Kansas, PhD thesis
[9] Caviglia, G.; Sbarra, E., Characteristic-free bounds for the Castelnuovo-Mumford regularity, Compos. Math., 141, 1365-1373 (2005) · Zbl 1100.13020
[10] Eder, C.; Faugère, J. C., A survey on signature-based Gröbner basis computations, J. Symb. Comput., 80, 719-784 (2017) · Zbl 1412.68306
[11] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0819.13001
[12] Eisenbud, D.; Sturmfels, B., Finding sparse systems of parameters, J. Pure Appl. Algebra, 94, 143-157 (1994) · Zbl 0807.13012
[13] Galligo, A., A propos du théorème de préparation de Weierstrass, (Norguet, F., Fonctions de Plusieurs Variables Complexes. Fonctions de Plusieurs Variables Complexes, Lecture Notes in Mathematics, vol. 409 (1974), Springer-Verlag: Springer-Verlag Berlin), 543-579 · Zbl 0297.32003
[14] Galligo, A., Théorème de division et stabilité en géometrie analytique locale, Ann. Inst. Fourier, 29, 2, 107-184 (1979) · Zbl 0412.32011
[15] Green, M. L., Generic initial ideals, (Elias, J.; Giral, J. M.; Miró-Roig, R. M.; Zarzuela, S., Six Lectures on Commutative Algebra. Six Lectures on Commutative Algebra, Progress in Mathematics, vol. 166 (1998), Birkhäuser: Birkhäuser Basel), 119-186 · Zbl 0933.13002
[16] Greuel, G.-M.; Pfister, G., A Singular Introduction to Commutative Algebra (2002), Springer-Verlag: Springer-Verlag Berlin · Zbl 1023.13001
[17] Guillemin, V. W.; Sternberg, S., An algebraic model of transitive differential geometry, Bull. Am. Math. Soc., 70, 16-47 (1964), (with a letter of Serre as appendix) · Zbl 0121.38801
[18] Hashemi, A., Strong Noether position and stabilized regularities, Commun. Algebra, 38, 515-533 (2010) · Zbl 1193.13019
[19] Hashemi, A., Efficient computation of Castelnuovo-Mumford regularity, Math. Comput., 81, 1163-1177 (2012) · Zbl 1247.14064
[20] Hashemi, A.; Schweinfurter, M.; Seiler, W. M., Quasi-stability versus genericity, (Gerdt, V. P.; Koepf, W.; Mayr, E. W.; Vorozhtsov, E. V., Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC 2012. Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC 2012, Lecture Notes in Computer Science, vol. 7442 (2012), Springer-Verlag: Springer-Verlag Berlin), 172-184 · Zbl 1373.13028
[21] Hashemi, A.; Schweinfurter, M.; Seiler, W. M., Deterministically computing reduction numbers of polynomial ideals, (Gerdt, V. P.; Koepf, W.; Seiler, W. M.; Vorozhtsov, E. V., Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC 2014. Computer Algebra in Scientific Computing. Computer Algebra in Scientific Computing, CASC 2014, Lecture Notes in Computer Science, vol. 8660 (2014), Springer-Verlag: Springer-Verlag Berlin), 186-201 · Zbl 1416.68220
[22] Hausdorf, M.; Seiler, W. M., An efficient algebraic algorithm for the geometric completion to involution, Appl. Algebra Eng. Commun. Comput., 13, 163-207 (2002) · Zbl 1095.13550
[23] Herzog, J.; Hibi, T., Componentwise linear ideals, Nagoya Math. J., 153, 141-153 (1999) · Zbl 0930.13018
[24] Herzog, J.; Hibi, T., Monomial Ideals, Graduate Texts in Mathematics, vol. 260 (2011), Springer-Verlag: Springer-Verlag London · Zbl 1206.13001
[25] Herzog, J.; Popescu, D.; Vladoiu, M., On the Ext-modules of ideals of Borel type, (Avramov, L. L.; Chardin, M.; Morales, M.; Polini, C., Commutative Algebra: Interactions with Algebraic Geometry. Commutative Algebra: Interactions with Algebraic Geometry, Contemp. Math., vol. 331 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence), 171-186 · Zbl 1050.13008
[26] Kapur, D.; Sun, Y.; Wang, D., A new algorithm for computing comprehensive Gröbner systems, (Koepf, W., Proc. ISSAC 2010 (2010), ACM Press), 29-36 · Zbl 1321.68533
[27] Möller, H. M.; Mora, T.; Traverso, C., Gröbner bases computation using syzygies, (Trager, B. M.; Lazard, D., Proc. ISSAC 1992 (1992), ACM Press: ACM Press New York), 320-328 · Zbl 0925.13010
[28] Montes, A., Using Kapur-Sun-Wang algorithm for the Gröbner cover, (Sendra, J. R.; Villarino, C., Proc. EACA 2012 (2012), Universidad de Alcalá de Henares), 135-138
[29] Montes, A.; Wibmer, M., Gröbner bases for polynomial systems with parameters, J. Symb. Comput., 45, 1391-1425 (2010) · Zbl 1207.13018
[30] Robertz, D., Noether normalization guided by monomial cone decompositions, J. Symb. Comput., 44, 1359-1373 (2009) · Zbl 1190.13026
[31] Schenzel, P.; Trung, N. V.; Cuong, N. T., Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85, 57-73 (1978) · Zbl 0398.13014
[32] Schweinfurter, M., Deterministic Genericity and the Computation of Homological Invariants (2016), Fachbereich Mathematik und Naturwissenschaften, Universität Kassel, PhD thesis
[33] Seiler, W. M., Spencer cohomology, differential equations, and Pommaret bases, (Rosenkranz, M.; Wang, D., Gröbner Bases in Symbolic Analysis. Gröbner Bases in Symbolic Analysis, Radon Series on Computational and Applied Mathematics, vol. 2 (2007), Walter de Gruyter: Walter de Gruyter Berlin), 171-219 · Zbl 1162.13013
[34] Seiler, W. M., A combinatorial approach to involution and \(δ\)-regularity I: involutive bases in polynomial algebras of solvable type, Appl. Algebra Eng. Commun. Comput., 20, 207-259 (2009) · Zbl 1175.13012
[35] Seiler, W. M., A combinatorial approach to involution and \(δ\)-regularity II: structure analysis of polynomial modules with Pommaret bases, Appl. Algebra Eng. Commun. Comput., 20, 261-338 (2009) · Zbl 1175.13011
[36] Seiler, W. M., Involution — The Formal Theory of Differential Equations and Its Applications in Computer Algebra, Algorithms and Computation in Mathematics, vol. 24 (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1205.35003
[37] Seiler, W. M., Effective genericity, \(δ\)-regularity and strong Noether position, Commun. Algebra, 40, 3933-3949 (2012) · Zbl 1262.13043
[38] Traverso, C., Hilbert functions and the Buchberger algorithm, J. Symb. Comput., 22, 355-376 (1996) · Zbl 0922.13019
[39] Weispfenning, V., Comprehensive Gröbner bases, J. Symb. Comput., 14, 1-29 (1992) · Zbl 0784.13013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.