×

Componentwise linear ideals. (English) Zbl 0930.13018

A componentwise linear ideal is a graded ideal \(I\) of a polynomial ring such that, for each degree \(q\), the ideal generated by all homogeneous polynomials of degree \(q\) belonging to \(I\) has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal \(I_\Delta\) arising from a simplicial complex \(\Delta\) is componentwise linear if and only if the Alexander dual of \(\Delta\) is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.

MSC:

13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
13D02 Syzygies, resolutions, complexes and commutative rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
Full Text: DOI

References:

[1] Combinatorics and Commutative Algebra (1996) · Zbl 0838.13008
[2] DOI: 10.1006/eujc.1993.1028 · Zbl 0799.52008 · doi:10.1006/eujc.1993.1028
[3] DOI: 10.1080/00927879308824680 · Zbl 0817.13006 · doi:10.1080/00927879308824680
[4] in ”Ring Theory II” pp 171– (1977)
[5] Glebe, N.S.W., Australia (1992)
[6] DOI: 10.1016/S0022-4049(97)00097-2 · Zbl 0941.13016 · doi:10.1016/S0022-4049(97)00097-2
[7] DOI: 10.1016/0021-8693(88)90111-1 · Zbl 0652.13010 · doi:10.1016/0021-8693(88)90111-1
[8] DOI: 10.1006/jabr.1995.1270 · Zbl 0840.13005 · doi:10.1006/jabr.1995.1270
[9] Springer Lect. Notes in Math. pp 76– (1988)
[10] DOI: 10.1016/S0022-4049(97)00051-0 · Zbl 0884.13006 · doi:10.1016/S0022-4049(97)00051-0
[11] Eine Bedingung fü;r die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z 158 pp 61– (1978) · Zbl 0352.13009
[12] Cohen-Macaulay Rings (1993)
[13] DOI: 10.1016/0021-8693(90)90237-I · Zbl 0701.13006 · doi:10.1016/0021-8693(90)90237-I
[14] DOI: 10.1080/00927879308824679 · Zbl 0817.13007 · doi:10.1080/00927879308824679
[15] Commutative Algebra with a View Toward Algebraic Geometry (1995) · Zbl 0819.13001
[16] Weakly stable ideals, Osaka J. Math. 34 pp 745– (1997)
[17] DOI: 10.1006/jabr.1996.6903 · Zbl 0897.13030 · doi:10.1006/jabr.1996.6903
[18] DOI: 10.1007/PL00004621 · Zbl 0914.13007 · doi:10.1007/PL00004621
[19] DOI: 10.1006/jabr.1996.0124 · Zbl 0868.13014 · doi:10.1006/jabr.1996.0124
[20] Electronic J. Combinatorics 3 (1996)
[21] DOI: 10.1006/aima.1996.0086 · Zbl 0867.13004 · doi:10.1006/aima.1996.0086
[22] DOI: 10.1007/BF02678204 · Zbl 0882.13018 · doi:10.1007/BF02678204
[23] DOI: 10.1007/BF02711496 · Zbl 0860.55018 · doi:10.1007/BF02711496
[24] Nonstandard Borel-fixed ideals (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.