×

NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals. (English) Zbl 1531.81006

Summary: In this work, we present the package NeatIBP, which automatically generates small-size integration-by-parts (IBP) identities for Feynman integrals. Based on the syzygy and module intersection techniques, the generated IBP identities’ propagator degree is controlled and thus the size of the system of IBP identities is shorter than that generated by the standard Laporta algorithm. This package is powered by the computer algebra systems Mathematica and Singular, and the library SpaSM. It is parallelized on the level of Feynman integral sectors. The generated small-size IBP identities can subsequently be used for either finite field reduction or analytic reduction. We demonstrate the capabilities of this package on several multi-loop IBP examples.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams

References:

[1] LHC Machine, J. Instrum. (2008)
[2] Alves, A. A., The LHCb detector at the LHC. J. Instrum. (2008)
[3] Chatrchyan, S., The CMS experiment at the CERN LHC. J. Instrum. (2008)
[4] Aad, G., The ATLAS experiment at the CERN large hadron collider. J. Instrum. (2008)
[5] Passarino, G.; Veltman, M. J.G., One loop corrections for e+ e- annihilation into mu+ mu- in the Weinberg model. Nucl. Phys. B, 151-207 (1979)
[6] Tkachov, F. V., A theorem on analytical calculability of four loop renormalization group functions. Phys. Lett. B, 65-68 (1981)
[7] Chetyrkin, K. G.; Tkachov, F. V., Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl. Phys. B, 159-204 (1981)
[8] Ossola, G.; Papadopoulos, C. G.; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level. Nucl. Phys. B, 147-169 (2007) · Zbl 1116.81067
[9] Ossola, G.; Papadopoulos, C. G.; Pittau, R., CutTools: a Program implementing the OPP reduction method to compute one-loop amplitudes. J. High Energy Phys. (2008)
[10] Laporta, S., High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A, 5087-5159 (2000) · Zbl 0973.81082
[11] Smirnov, A. V.; Smirnov, V. A., S-bases as a tool to solve reduction problems for Feynman integrals. Nucl. Phys. B, Proc. Suppl., 80-84 (2006)
[12] Smirnov, A. V.; Smirnov, V. A., Applying Grobner bases to solve reduction problems for Feynman integrals. J. High Energy Phys. (2006)
[13] Bitoun, T.; Bogner, C.; Klausen, R. P.; Panzer, E., Feynman integral relations from parametric annihilators. Lett. Math. Phys., 3, 497-564 (2019) · Zbl 1412.81141
[14] Lee, R. N., Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals. J. High Energy Phys. (2008)
[15] Lee, R. N., Modern techniques of multiloop calculations, 297-300
[16] Baikov, P. A., Explicit solutions of the multiloop integral recurrence relations and its application. Nucl. Instrum. Methods, Sect. A, 347-349 (1997)
[17] Grozin, A. G., Integration by parts: an introduction. Int. J. Mod. Phys. A, 2807-2854 (2011) · Zbl 1247.81138
[18] Barakat, M.; Brüser, R.; Fieker, C.; Huber, T.; Piclum, J., Feynman integral reduction using Gröbner bases · Zbl 07701983
[19] Mastrolia, P.; Mizera, S., Feynman integrals and intersection theory. J. High Energy Phys. (2019) · Zbl 1411.81093
[20] Frellesvig, H.; Gasparotto, F.; Mandal, M. K.; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Vector space of Feynman integrals and multivariate intersection numbers. Phys. Rev. Lett., 20 (2019)
[21] Frellesvig, H.; Gasparotto, F.; Laporta, S.; Mandal, M. K.; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Decomposition of Feynman integrals on the maximal cut by intersection numbers. J. High Energy Phys. (2019) · Zbl 1416.81198
[22] Frellesvig, H.; Gasparotto, F.; Laporta, S.; Mandal, M. K.; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Decomposition of Feynman integrals by multivariate intersection numbers. J. High Energy Phys. (2021) · Zbl 1461.81044
[23] Liu, X.; Ma, Y.-Q.; Wang, C.-Y., A systematic and efficient method to compute multi-loop master integrals. Phys. Lett. B, 353-357 (2018)
[24] Liu, X.; Ma, Y.-Q., Determining arbitrary Feynman integrals by vacuum integrals. Phys. Rev. D, 7 (2019)
[25] Guan, X.; Liu, X.; Ma, Y.-Q., Complete reduction of integrals in two-loop five-light-parton scattering amplitudes. Chin. Phys. C, 9 (2020)
[26] Zhang, P.; Wang, C.-Y.; Liu, X.; Ma, Y.-Q.; Meng, C.; Chao, K.-T., Semi-analytical calculation of gluon fragmentation \(into^1 S_0^{[ 1 , 8 ]}\) quarkonia at next-to-leading order. J. High Energy Phys. (2019)
[27] Wang, Y.; Li, Z.; Ul Basat, N., Direct reduction of multiloop multiscale scattering amplitudes. Phys. Rev. D, 7 (2020)
[28] Liu, Z.-F.; Ma, Y.-Q., Determining Feynman integrals with only input from linear algebra. Phys. Rev. Lett., 22 (2022)
[29] Liu, X.; Ma, Y.-Q., AMFlow: a Mathematica package for Feynman integrals computation via auxiliary mass flow. Comput. Phys. Commun. (2023)
[30] Liu, X.; Ma, Y.-Q., Multiloop corrections for collider processes using auxiliary mass flow. Phys. Rev. D, 5 (2022)
[31] Liu, X.; Ma, Y.-Q.; Tao, W.; Zhang, P., Calculation of Feynman loop integration and phase-space integration via auxiliary mass flow. Chin. Phys. C, 1 (2021)
[32] von Manteuffel, A.; Schabinger, R. M., A novel approach to integration by parts reduction. Phys. Lett. B, 101-104 (2015) · Zbl 1330.81151
[33] Peraro, T., Scattering amplitudes over finite fields and multivariate functional reconstruction. J. High Energy Phys. (2016) · Zbl 1390.81631
[34] Klappert, J.; Lange, F., Reconstructing rational functions with FireFly. Comput. Phys. Commun. (2020)
[35] Klappert, J.; Klein, S. Y.; Lange, F., Interpolation of dense and sparse rational functions and other improvements in FireFly. Comput. Phys. Commun. (2021)
[36] Peraro, T., FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs. J. High Energy Phys. (2019)
[37] Kosower, D. A., Direct solution of integration-by-parts systems. Phys. Rev. D, 2 (2018)
[38] Anastasiou, C.; Lazopoulos, A., Automatic integral reduction for higher order perturbative calculations. J. High Energy Phys. (2004)
[39] Smirnov, A. V., Algorithm FIRE - Feynman integral REduction. J. High Energy Phys. (2008) · Zbl 1245.81033
[40] Smirnov, A. V.; Smirnov, V. A., FIRE4, LiteRed and accompanying tools to solve integration by parts relations. Comput. Phys. Commun., 2820-2827 (2013) · Zbl 1344.81031
[41] Smirnov, A. V., FIRE5: a C++ implementation of Feynman integral REduction. Comput. Phys. Commun., 182-191 (2015) · Zbl 1344.81030
[42] Smirnov, A. V.; Chuharev, F. S., FIRE6: Feynman integral REduction with modular arithmetic. Comput. Phys. Commun. (2020) · Zbl 1510.81007
[43] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira—a Feynman integral reduction program. Comput. Phys. Commun., 99-112 (2018) · Zbl 1498.81004
[44] Maierhöfer, P.; Usovitsch, J., Kira 1.2 release notes · Zbl 1498.81004
[45] Maierhöfer, P.; Usovitsch, J., Recent developments in Kira. CERN Yellow Rep., Monogr., 201-204 (2020)
[46] Lee, R. N., LiteRed 1.4: a powerful tool for reduction of multiloop integrals. J. Phys. Conf. Ser. (2014)
[47] Studerus, C., Reduze-Feynman integral reduction in C++. Comput. Phys. Commun., 1293-1300 (2010) · Zbl 1219.81133
[48] von Manteuffel, A.; Studerus, C., Reduze 2 - distributed Feynman integral reduction
[49] Gluza, J.; Kajda, K.; Kosower, D. A., Towards a basis for planar two-loop integrals. Phys. Rev. D (2011)
[50] Schabinger, R. M., A new algorithm for the generation of unitarity-compatible integration by parts relations. J. High Energy Phys. (2012) · Zbl 1306.81359
[51] Cabarcas, D.; Ding, J., Linear algebra to compute syzygies and gröbner bases, 67-74 · Zbl 1323.68588
[52] Chen, G.; Liu, J.; Xie, R.; Zhang, H.; Zhou, Y., Syzygies probing scattering amplitudes. J. High Energy Phys. (2016) · Zbl 1390.81209
[53] Böhm, J.; Georgoudis, A.; Larsen, K. J.; Schulze, M.; Zhang, Y., Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals. Phys. Rev. D, 2 (2018)
[54] Bosma, J.; Larsen, K. J.; Zhang, Y., Differential equations for loop integrals without squared propagators. PoS (2018)
[55] Boehm, J.; Bendle, D.; Decker, W.; Georgoudis, A.; Pfreundt, F.-J.; Rahn, M.; Zhang, Y., Module intersection for the integration-by-parts reduction of multi-loop Feynman integrals. PoS, 004 (2022)
[56] Henn, J.; Ma, R.; Yan, K.; Zhang, Y., Four-dimensional differential equations for the leading divergences of dimensionally-regulated loop integrals. J. High Energy Phys. (2023) · Zbl 07690726
[57] Baikov, P. A., Explicit solutions of n loop vacuum integral recurrence relations
[58] Baikov, P. A., Explicit solutions of the three loop vacuum integral recurrence relations. Phys. Lett. B, 404-410 (1996)
[59] Baikov, P. A., A practical criterion of irreducibility of multi-loop Feynman integrals. Phys. Lett. B, 325-329 (2006) · Zbl 1247.81314
[60] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-3-0 — a computer algebra system for polynomial computations (2022)
[61] group, T. S., SpaSM: a sparse direct solver modulo \(p (2017)\)
[62] Smirnov, A. V.; Petukhov, A. V., The number of master integrals is finite. Lett. Math. Phys., 37-44 (2011) · Zbl 1216.81076
[63] Larsen, K. J.; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry. Phys. Rev. D, 4 (2016)
[64] Zhang, Y., Lecture notes on multi-loop integral reduction and applied algebraic geometry (2016)
[65] Lee, R. N.; Pomeransky, A. A., Critical points and number of master integrals. J. High Energy Phys. (2013) · Zbl 1342.81139
[66] Pak, A., The Toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques. J. Phys. Conf. Ser. (2012)
[67] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B, 59-101 (1995)
[68] Berger, C. F.; Bern, Z.; Dixon, L. J.; Febres Cordero, F.; Forde, D.; Ita, H.; Kosower, D. A.; Maitre, D., An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D (2008)
[69] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills. Nucl. Phys. B, 275-305 (2005) · Zbl 1178.81202
[70] Georgoudis, A.; Larsen, K. J.; Zhang, Y., Azurite: an algebraic geometry based package for finding bases of loop integrals. Comput. Phys. Commun., 203-215 (2017) · Zbl 1498.81007
[71] Gamblin, T.; LeGendre, M.; Collette, M. R.; Lee, G. L.; Moody, A.; de Supinski, B. R.; Futral, S., The spack package manager: bringing order to hpc software chaos, 1-12
[72] Chen, L.-B.; Dong, L.; Li, H. T.; Li, Z.; Wang, J.; Wang, Y., Complete two-loop QCD amplitudes for tW production at hadron colliders
[73] Henn, J. M.; Lim, J.; Torres Bobadilla, W. J., First look at the evaluation of three-loop non-planar Feynman diagrams for Higgs plus jet production. J. High Energy Phys. (2023)
[74] Böhm, J.; Decker, W.; Frühbis-Krüger, A.; Pfreundt, F.-J.; Rahn, M.; Ristau, L., Towards massively parallel computations in algebraic geometry. Found. Comput. Math., 767-806 (2020) · Zbl 1485.14109
[75] Böhm, J.; Frühbis-Krüger, A., Massively parallel computations in algebraic geometry, 11-14
[76] (2022), C. C. H. P. C. Fraunhofer ITWM, GPI-Space
[77] Gamblin, T.; LeGendre, M.; Collette, M. R.; Lee, G. L.; Moody, A.; de Supinski, B. R.; Futral, S., The spack package manager: bringing order to hpc software chaos
[78] Bern, Z.; Enciso, M.; Ita, H.; Zeng, M., Dual conformal symmetry, integration-by-parts reduction, differential equations and the nonplanar sector. Phys. Rev. D, 9 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.