×

Four-dimensional differential equations for the leading divergences of dimensionally-regulated loop integrals. (English) Zbl 07690726

Summary: We invent an automated method for computing the divergent part of Feynman integrals in dimensional regularization. Our method exploits simplifications from four-dimensional integration-by-parts identities. Leveraging algorithms from the literature, we show how to find simple differential equations for the divergent part of Feynman integrals that are free of subdivergences. We illustrate the method by an application to heavy quark effective theory at three loops.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams

References:

[1] V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts in Modern Physics (STMP) 250 (2012) [INSPIRE]. · Zbl 1268.81004
[2] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE]. · Zbl 1020.81734
[3] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. 318 (1993) 649] [hep-ph/9212308] [INSPIRE]. · Zbl 1007.81512
[4] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435 (1997) · doi:10.1007/BF03185566
[5] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[6] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.251601
[7] Caron-Huot, S.; Henn, JM, Iterative structure of finite loop integrals, JHEP, 06, 114 (2014) · Zbl 1333.81217 · doi:10.1007/JHEP06(2014)114
[8] Tancredi, L., Integration by parts identities in integer numbers of dimensions. A criterion for decoupling systems of differential equations, Nucl. Phys. B, 901, 282 (2015) · Zbl 1332.81065 · doi:10.1016/j.nuclphysb.2015.10.015
[9] Connes, A.; Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys., 199, 203 (1998) · Zbl 0932.16038 · doi:10.1007/s002200050499
[10] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].
[11] Dixon, LJ; Magnea, L.; Sterman, GF, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP, 08, 022 (2008) · doi:10.1088/1126-6708/2008/08/022
[12] Almelid, O.; Duhr, C.; Gardi, E., Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.172002
[13] Anastasiou, C.; Sterman, G., Removing infrared divergences from two-loop integrals, JHEP, 07, 056 (2019) · doi:10.1007/JHEP07(2019)056
[14] Gluza, J.; Kajda, K.; Kosower, DA, Towards a Basis for Planar Two-Loop Integrals, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.045012
[15] Schabinger, RM, A New Algorithm For The Generation Of Unitarity-Compatible Integration By Parts Relations, JHEP, 01, 077 (2012) · Zbl 1306.81359 · doi:10.1007/JHEP01(2012)077
[16] Dlapa, C.; Henn, J.; Yan, K., Deriving canonical differential equations for Feynman integrals from a single uniform weight integral, JHEP, 05, 025 (2020) · doi:10.1007/JHEP05(2020)025
[17] Grozin, A.; Henn, JM; Korchemsky, GP; Marquard, P., The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP, 01, 140 (2016) · Zbl 1388.81323 · doi:10.1007/JHEP01(2016)140
[18] A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].
[19] R.A. Brandt, F. Neri and M.-A. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].
[20] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].
[21] A.G. Grozin, Heavy quark effective theory, Springer Tracts Mod. Phys. 201 (2004) 1 [INSPIRE].
[22] J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].
[23] J.G.M. Gatheral, Exponentiation of Eikonal Cross-sections in Nonabelian Gauge Theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].
[24] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[25] Lee, RN, Reducing differential equations for multiloop master integrals, JHEP, 04, 108 (2015) · Zbl 1388.81109 · doi:10.1007/JHEP04(2015)108
[26] Pak, A., The Toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques, J. Phys. Conf. Ser., 368 (2012) · doi:10.1088/1742-6596/368/1/012049
[27] Larsen, KJ; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.041701
[28] Böhm, J., Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.025023
[29] Böhm, J., Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP, 09, 024 (2018) · Zbl 1398.81264 · doi:10.1007/JHEP09(2018)024
[30] Bendle, D., Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space, JHEP, 02, 079 (2020) · Zbl 1435.81076 · doi:10.1007/JHEP02(2020)079
[31] Z. Wu, J. Böhm, R. Ma, H. Xu and Y. Zhang, NeatIBP 1.0 — A package generating small-size integration-by-parts relations for feynman integrals, (2023), https://github.com/yzhphy/NeatIBP.
[32] C. Bouillaguet, SpaSM: a sparse direct solver modulo p, (2017), http://github.com/cbouilla/spasm.
[33] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \(q\overline{q} \)→ VV, JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].
[34] Correa, D.; Henn, J.; Maldacena, J.; Sever, A., The cusp anomalous dimension at three loops and beyond, JHEP, 05, 098 (2012) · Zbl 1348.81442 · doi:10.1007/JHEP05(2012)098
[35] Grozin, A.; Henn, JM; Korchemsky, GP; Marquard, P., Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.062006
[36] Peraro, T., Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP, 12, 030 (2016) · Zbl 1390.81631 · doi:10.1007/JHEP12(2016)030
[37] Peraro, T., FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP, 07, 031 (2019) · doi:10.1007/JHEP07(2019)031
[38] Liu, ZL; Schalch, N., Infrared Singularities of Multileg QCD Amplitudes with a Massive Parton at Three Loops, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.232001
[39] K. Schultka, Toric geometry and regularization of Feynman integrals, arXiv:1806.01086 [INSPIRE].
[40] Arkani-Hamed, N.; Hillman, A.; Mizera, S., Feynman polytopes and the tropical geometry of UV and IR divergences, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.125013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.