×

An integrated approach for the conformal discretization of complex inclusion-based microstructures. (English) Zbl 1464.74139

Summary: Computational homogenization techniques nowadays are extensively used to gain a better understanding of the links between complex microstructural features in materials and their corresponding (evolving) macroscopic properties. This requires robust tools to discretize complex microstructural geometries and enable simulations. To achieve this, the present contribution presents an integrated approach for the conformal discretization of complex inclusion-based RVE geometries defined implicitly based on experimental techniques or through computational RVE generation methodologies. The conforming mesh generator extends the Persson-Strang truss analogy in order to deal with complex periodic heterogeneous RVEs. Such an approach, based on signed distance fields, carries the advantage that the level set information maintained in previously presented RVE generation methodologies [B. Sonon et al., “A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs”, Comput. Methods Appl. Mech. Eng. 223–224, 103–122 (2012; doi:10.1016/j.cma.2012.02.018)] can seamlessly be used in the discretization procedure. This provides a natural link between the RVE geometry generation and the mesh generator to obtain high quality optimized FEM meshes exploitable in regular codes and softwares.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E05 Inhomogeneity in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Selvadurai APS, Gowacki A (2008) Permeability hysterisis of limestone during isotropic compression. Ground Water 46(1):113119. https://doi.org/10.1111/j.1745-6584.2007.00390.x · doi:10.1111/j.1745-6584.2007.00390.x
[2] Hemes S, Desbois G, Urai JL, Schrppel B, Schwarz JO (2015) Multi-scale characterization of porosity in boom clay (HADES-level, Mol, Belgium) using a combination of X-ray, \[ \mu\] μ-ct, 2D BIB-SEM and FIB-SEM tomography. Microporous Mesoporous Mater 208:1-20. https://doi.org/10.1016/j.micromeso.2015.01.022 · doi:10.1016/j.micromeso.2015.01.022
[3] Song Y, Davy C, Troadec D, Blanchenet AM, Skoczylas F, Talandier J, Robinet J (2015) Multi-scale pore structure of cox claystone: towards the prediction of fluid transport. Marine Petrol Geol 65:63-82. https://doi.org/10.1016/j.marpetgeo.2015.04.004 · doi:10.1016/j.marpetgeo.2015.04.004
[4] Kouznetsova V, Geers MG, Brekelmans WM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235-1260 · Zbl 1058.74070
[5] Massart TJ, Selvadurai APS (2014) Computational modelling of crack-induced permeability evolution in granite with dilatant cracks. Int J Rock Mech Min Sci 70:593-604. https://doi.org/10.1016/j.ijrmms.2014.06.006 · doi:10.1016/j.ijrmms.2014.06.006
[6] Masson R, Bornert M, Suquet P, Zaoui A (2000) An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J Mech Phys Solids 48(6):1203-1227. https://doi.org/10.1016/S0022-5096(99)00071-X · Zbl 0984.74068 · doi:10.1016/S0022-5096(99)00071-X
[7] Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in Physics. Springer, Berlin. https://cds.cern.ch/record/1391389 · Zbl 0432.70002
[8] Sun WC, Andrade JE, Rudnicki JW (2011) Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. Int J Numer Methods Eng 88(12):1260-1279. https://doi.org/10.1002/nme.3220 · Zbl 1242.74165 · doi:10.1002/nme.3220
[9] der Sluis O, Vosbeek P, Schreurs P, Jer H (1999) Homogenization of heterogeneous polymers. Int J Solids Struct 36(21):3193-3214. https://doi.org/10.1016/S0020-7683(98)00144-9 · Zbl 0976.74055 · doi:10.1016/S0020-7683(98)00144-9
[10] Stroeven M, Askes H, Sluys L (2004) Numerical determination of representative volumes for granular materials. Comput Methods Appl Mech Eng 193(30):3221-3238. https://doi.org/10.1016/j.cma.2003.09.023 · Zbl 1060.74525 · doi:10.1016/j.cma.2003.09.023
[11] Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37(16):2285-2311. https://doi.org/10.1016/S0020-7683(98)00341-2 · Zbl 0991.74056 · doi:10.1016/S0020-7683(98)00341-2
[12] Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37-48. https://doi.org/10.1007/s004660000212 · Zbl 1005.74018 · doi:10.1007/s004660000212
[13] Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235-1260. https://doi.org/10.1002/nme.541 · Zbl 1058.74070 · doi:10.1002/nme.541
[14] Roubin E, Colliat JB, Benkemoun N (2015) Meso-scale modeling of concrete: a morphological description based on excursion sets of random fields. Comput Mater Sci 102:183-195. https://doi.org/10.1016/j.commatsci.2015.02.039 · doi:10.1016/j.commatsci.2015.02.039
[15] Sonon B, François B, Massart TJ (2012) A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs. Comput Methods Appl Mech Eng 223:103-122. https://doi.org/10.1016/j.cma.2012.02.018 · doi:10.1016/j.cma.2012.02.018
[16] Legrain G, Cartraud P, Perreard I, Mos N (2011) An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915-934. https://doi.org/10.1002/nme.3085 · Zbl 1235.74297 · doi:10.1002/nme.3085
[17] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J · Zbl 0955.74066
[18] Sukumar N, Chopp D, Moës N, Belytschko” T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46-47):6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8 · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[19] Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309-1331. https://doi.org/10.1002/nme.2579 · Zbl 1176.74181 · doi:10.1002/nme.2579
[20] Si H (2015) Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw 41(2):11:1-11:36. https://doi.org/10.1145/2629697 · Zbl 1369.65157 · doi:10.1145/2629697
[21] TetMesh GHS3D: a powerful isotropic tet-mesher, version 4.2 (2010). URL http://www-roc.inria.fr/gamma/gamma/ ghs3d/ghs.php
[22] Schöberl J (1997) Netgen an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41-52. https://doi.org/10.1007/s007910050004 · Zbl 0883.68130 · doi:10.1007/s007910050004
[23] George PL (1997) Improvements on delaunay-based three-dimensional automatic mesh generator. Finite Elem Anal Des 25(3):297-317. https://doi.org/10.1016/S0168-874X(96)00063-7 · Zbl 0897.65078 · doi:10.1016/S0168-874X(96)00063-7
[24] George PL, Borouchaki H (1998) Delaunay triangulation and meshing. Hermès, Paris · Zbl 0908.65143
[25] Shewchuk JR (2012) Lecture notes on delaunay mesh generation. Department of Electrical Engineering and Computer Sciences, University of California, Oakland
[26] Frey P, George P (2000) Mesh generation: application to finite elements. Hermes Science. https://books.google.be/books?id=kwAgL0jgEXwC · Zbl 0968.65009
[27] Boyd SK, Mller R (2006) Smooth surface meshing for automated finite element model generation from 3D image data. J Biomech 39(7):1287-1295. https://doi.org/10.1016/j.jbiomech.2005.03.006 · doi:10.1016/j.jbiomech.2005.03.006
[28] Klaas O, Beall MW, Shephard MS (2013) Construction of models and meshes of heterogeneous material microstructures from image data. Springer, Dordrecht, pp 171-193. https://doi.org/10.1007/978-94-007-4255-0_10 · doi:10.1007/978-94-007-4255-0_10
[29] Potter E, Pinho S, Robinson P, Iannucci L, McMillan A (2012) Mesh generation and geometrical modelling of 3D woven composites with variable tow cross-sections. Comput Mater Sci 51(1):103-111. https://doi.org/10.1016/j.commatsci.2011.06.034 · doi:10.1016/j.commatsci.2011.06.034
[30] Hormann K (2003) From scattered samples to smooth surfaces. In: Proceedings of geometric modeling and computer graphics (2003)
[31] Zhang Y, Bajaj C, Sohn B (2005) 3D finite element meshing from imaging data. Comput Methods Appl Mech Eng 194(48-49):5083-5106. https://doi.org/10.1016/j.cma.2004.11.026 · Zbl 1093.65019 · doi:10.1016/j.cma.2004.11.026
[32] Zhang Y, Hughes TJ, Bajaj CL (2010) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5):405-415. https://doi.org/10.1016/j.cma.2009.06.007 · Zbl 1227.74129 · doi:10.1016/j.cma.2009.06.007
[33] Drach A, Drach B, Tsukrov I (2014) Processing of fiber architecture data for finite element modeling of 3D woven composites. (Special Issue dedicated to Professor Zdenk Bittnar on the occasion of his Seventieth Birthday: Part 2). Adva Eng Softw 72:18-27. https://doi.org/10.1016/j.advengsoft.2013.06.006 · doi:10.1016/j.advengsoft.2013.06.006
[34] Fritzen F, Bhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48(5):706-718. https://doi.org/10.1016/j.ijsolstr.2010.11.010 · Zbl 1236.74058 · doi:10.1016/j.ijsolstr.2010.11.010
[35] Grail G, Hirsekorn M, Wendling A, Hivet G, Hambli R (2013) Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements. Compos Part A Appl Sci Manuf 55:143-151. https://doi.org/10.1016/j.compositesa.2013.09.001 · doi:10.1016/j.compositesa.2013.09.001
[36] Legrain G, Allais R, Cartraud P (2011) On the use of the extended finite element method with quadtree/octree meshes. Int J Numer Methods Eng 86(6):717-743. https://doi.org/10.1002/nme.3070 · Zbl 1235.74296 · doi:10.1002/nme.3070
[37] Sonon B, François B, Massart TJ (2015) An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech 56(2):221-242. https://doi.org/10.1007/s00466-015-1168-8 · Zbl 1329.74194 · doi:10.1007/s00466-015-1168-8
[38] Sonon B, Massart TJ (2013) A level-set based representative volume element generator and xfem simulations for textile and 3D-reinforced composites. Materials 6(12):5568-5592. https://doi.org/10.3390/ma6125568 · doi:10.3390/ma6125568
[39] Persson PO, Strang G (2004) A simple mesh generator in matlab. SIAM Rev 46:2004 · Zbl 1061.65134
[40] Goldman R (2005) Curvature formulas for implicit curves and surfaces. Comput Aided Geom Des 22(7):632-658. https://doi.org/10.1016/j.cagd.2005.06.005 · Zbl 1084.53004 · doi:10.1016/j.cagd.2005.06.005
[41] Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge. https://books.google.be/books?id=ErpOoynE4dIC · Zbl 0973.76003
[42] Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences. Springer, New York. https://books.google.be/books?id=i4bfBwAAQBAJ · Zbl 1026.76001
[43] Persson PO (2005) Mesh generation for implicit geometries. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA. AAI0807802
[44] Lo D (2015) Finite element mesh generation. Taylor & Francis. https://books.google.be/books?id=5eeCZwEACAAJ · Zbl 1316.65108
[45] Field DA (2000) Qualitative measures for initial meshes. Int J Numer Methods Eng 47(4):887-906. https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4<887::AID-NME804>3.0.CO;2-H · Zbl 0944.65125
[46] Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40(21):3979-4002. https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9 · Zbl 0897.65075
[47] Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2015) Distortion and quality measures for validating and generating high-order tetrahedral meshes. Eng Comput 31(3):423-437. https://doi.org/10.1007/s00366-014-0370-1 · Zbl 1352.65609 · doi:10.1007/s00366-014-0370-1
[48] Klingner BM, Shewchuk JR (2008) Aggressive tetrahedral mesh improvement. Springer, Berlin, pp 3-23. https://doi.org/10.1007/978-3-540-75103-8_1 · Zbl 1238.65011 · doi:10.1007/978-3-540-75103-8_1
[49] Si H, Gärtner K (2010) 3D boundary recovery by constrained delaunay tetrahedralization. Preprint. WIAS. https://books.google.be/books?id=v4zlZwEACAAJ · Zbl 1217.65216
[50] Shewchuk JR (2002) Constrained delaunay tetrahedralizations and provably good boundary recovery. In: Proceedings of the 11th international meshing roundtable, IMR 2002, Ithaca, New York, USA, 15-18 Sept 2002, pp 193-204 (2002). http://imr.sandia.gov/papers/abstracts/Sh256.html
[51] Si H (2010) Constrained delaunay tetrahedral mesh generation and refinement. Finite Elem Anal Des 46(1-2):33-46. https://doi.org/10.1016/j.finel.2009.06.017 · doi:10.1016/j.finel.2009.06.017
[52] Rusinkiewicz S (2004) Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 3D data processing, visualization, and transmission, 2Nd international symposium, 3DPVT ’04, pp 486-493. IEEE Computer Society, Washington, DC, USA. https://doi.org/10.1109/3DPVT.2004.54
[53] Macri M, De S (2008) An octree partition of unity method (OctPUM) with enrichments for multiscale modeling of heterogeneous media. Comput Struct 86(7):780-795. https://doi.org/10.1016/j.compstruc.2007.06.001 · doi:10.1016/j.compstruc.2007.06.001
[54] Paiva A, Lopes H, Lewiner T, Figueiredo LHD (2006) Robust adaptive meshes for implicit surfaces. In: 2006 19th Brazilian symposium on computer graphics and image processing, pp 205-212. https://doi.org/10.1109/SIBGRAPI.2006.40
[55] Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21(4):163-169. https://doi.org/10.1145/37402.37422 · doi:10.1145/37402.37422
[56] Field DA (1988) Laplacian smoothing and delaunay triangulations. Commun Appl Numer Methods 4(6):709-712. https://doi.org/10.1002/cnm.1630040603 · Zbl 0664.65107 · doi:10.1002/cnm.1630040603
[57] Bottasso CL, Detomi D, Serra R (2005) The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes. Comput Methods Appl Mech Eng 194(39):4244-4264. https://doi.org/10.1016/j.cma.2004.08.014 · Zbl 1151.74429 · doi:10.1016/j.cma.2004.08.014
[58] Lin TJ, Guan ZQ, Chang JH, Lo SH (2014) Vertex-ball spring smoothing: an efficient method for unstructured dynamic hybrid meshes. Comput Struct 136:24-33. https://doi.org/10.1016/j.compstruc.2014.01.028 · doi:10.1016/j.compstruc.2014.01.028
[59] Bossen FJ, Heckbert P (1996) A pliant method for anisotropic mesh generation. In: Proceedings of the 5th international meshing roundtable, pp 63-74
[60] Koko J (2015) A matlab mesh generator for the two-dimensional finite element method. Appl Math Comput 250:650-664. https://doi.org/10.1016/j.amc.2014.11.009 · Zbl 1328.65245 · doi:10.1016/j.amc.2014.11.009
[61] Wintiba B, Sonon B, Kamel KEM, Massart TJ (2017) An automated procedure for the generation and conformal discretization of 3D woven composites RVEs. Compos Struct 180(Supplement C):955-971. https://doi.org/10.1016/j.compstruct.2017.08.010 · doi:10.1016/j.compstruct.2017.08.010
[62] Hashemi MA, Khaddour G, François B, Massart TJ, Salager S (2014) A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing. Acta Geotech 9(5):831-846. https://doi.org/10.1007/s11440-013-0289-5 · doi:10.1007/s11440-013-0289-5
[63] Adler RJ (2008) Some new random field tools for spatial analysis. Stoch Environ Res Risk Assess 22(6):809. https://doi.org/10.1007/s00477-008-0242-6 · doi:10.1007/s00477-008-0242-6
[64] Attene M (2014) Direct repair of self-intersecting meshes. Graph Models 76(6):658-668. https://doi.org/10.1016/j.gmod.2014.09.002 · doi:10.1016/j.gmod.2014.09.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.