×

Harmonic analysis on graphs via Bratteli diagrams and path-space measures. (English) Zbl 1493.37016

The paper is devoted to the harmonic analysis of graphs. Specifically, it is focused on those graph systems \(G\) with the property that the sets vertices and edges admit discrete level structures, which was motivated by recent strudies of so-called Bratteli diagrams.
The authors use discrete levels leading to discrete-time random walk models. In this way, they extend the case when the levels in \(G\) are standard measure spaces, comparing to the earlier analysis of Bratelli diagrams.
The paper contains a large number of references on the topic.

MSC:

37B10 Symbolic dynamics
37A46 Relations between ergodic theory and harmonic analysis
37H10 Generation, random and stochastic difference and differential equations
42B37 Harmonic analysis and PDEs
47L50 Dual spaces of operator algebras
60J45 Probabilistic potential theory
28D05 Measure-preserving transformations

References:

[1] G. T. Adams, J. Froelich, P. J. McGuire, and V. I. Paulsen, Analytic reproducing kernels and factorization, Indiana Univ. Math. J. 43 (1994), 839-856. · Zbl 0820.47035
[2] J. R. Adams, Plant segmentation by supervised machine learning methods and phe-notypic trait extraction of soybean plants using deep convolutional neural networks with transfer learning, Ph.D. thesis-The Univ. of Nebraska, Lincoln, 2020.
[3] D. Alpay and P. Jorgensen, Reproducing kernel Hilbert spaces generated by the bino-mial coefficients, Illinois J. Math. 58 (2014), 471-495. · Zbl 1332.46035
[4] D. Alpay and P. Jorgensen, Spectral theory for Gaussian processes: reproducing ker-nels, boundaries, and L 2 -wavelet generators with fractional scales, Numer. Funct. Anal. Optim. 36 (2015), 1239-1285. · Zbl 1335.60053
[5] V. Anandam, Harmonic Functions and Potentials on Finite or Infinite Networks, Lect. Notes Unione Mat. Ital. 12, Springer, Heidelberg; UMI, Bologna, 2011. · Zbl 1239.31001
[6] V. Anandam, Integral representation of positive separately harmonic functions in a product tree, J. Anal. 20 (2012), 91-101. · Zbl 1300.31011
[7] V. Anandam, Subordinate harmonic structures in an infinite network, in: Complex Analysis and Potential Theory, CRM Proc. Lecture Notes 55, Amer. Math. Soc., Providence, RI, 2012, 301-314. · Zbl 1319.31011
[8] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. · Zbl 0037.20701
[9] N. Aronszajn and K. T. Smith, Characterization of positive reproducing kernels. Applications to Green’s functions, Amer. J. Math. 79 (1957), 611-622. · Zbl 0079.13603
[10] P. Baudot, The Poincaré-Shannon machine: statistical physics and machine learning aspects of information cohomology, Entropy 21 (2019), no. 9, art. 881, 39 pp.
[11] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer, Boston, MA, 2004. · Zbl 1145.62002
[12] S. Bezuglyi, A. H. Dooley, and J. Kwiatkowski, Topologies on the group of Borel automorphisms of a standard Borel space, Topol. Methods Nonlinear Anal. 27 (2006), no. 2, 333-385. · Zbl 1136.37002
[13] S. Bezuglyi and P. E. T. Jorgensen, Representations of Cuntz-Krieger relations, dynamics on Bratteli diagrams, and path-space measures, in: Trends in Harmonic Analysis and Its Applications, Contemp. Math. 650, Amer. Math. Soc., Providence, RI, 2015, 57-88. · Zbl 1351.46064
[14] S. Bezuglyi and P. E. T. Jorgensen, Graph Laplace and Markov operators on a measure space, in: Linear Systems, Signal Processing and Hypercomplex Analysis, Operator Theory Adv. Appl. 275, Birkhäuser, Cham, 2019, 67-138. · Zbl 1454.47098
[15] S. Bezuglyi and P. E. T. Jorgensen, Monopoles, dipoles, and harmonic functions on Bratteli diagrams, Acta Appl. Math. 159 (2019), 169-224. · Zbl 1408.37021
[16] S. Bezuglyi and P. E. T. Jorgensen, Laplace operators in finite energy and dissipation spaces, arXiv:1903.09572 (2019).
[17] S. Bezuglyi and P. E. T. Jorgensen, Symmetric measures, continuous networks, and dynamics, in: New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative, Operator Theory Adv. Appl. 286, Birkhäuser, Cham, 2021, 139-197. · Zbl 1503.60105
[18] S. Bezuglyi and O. Karpel, Bratteli diagrams: structure, measures, dynamics, in: Dynamics and Numbers, Contemp. Math. 669, Amer. Math. Soc., Providence, RI, 2016, 1-36. · Zbl 1376.37005
[19] S. Bezuglyi and O. Karpel, Invariant measures for Cantor dynamical systems, in: Dynamics: Topology and Numbers, Contemp. Math. 744, Amer. Math. Soc., Provi-dence, RI, 2020, 259-295. · Zbl 1447.37004
[20] S. Bezuglyi, J. Kwiatkowski, and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems 29 (2009), 37-72. · Zbl 1169.37004
[21] O. Bratteli, Inductive limits of finite dimensional C * -algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234. · Zbl 0264.46057
[22] O. Bratteli, P. E. T. Jorgensen, K. H. Kim, and F. Roush, Decidability of the iso-morphism problem for stationary AF-algebras and the associated ordered simple di-mension groups, Ergodic Theory Dynam. Systems 21 (2001), 1625-1655. · Zbl 1007.46046
[23] O. Bratteli, P. E. T. Jorgensen, K. H. Kim, and F. Roush, Computation of isomor-phism invariants for stationary dimension groups, Ergodic Theory Dynam. Systems 22 (2002), 99-127. · Zbl 1067.46060
[24] K. Carroll and K. Petersen, Markov diagrams for some non-Markovian systems, in: Ergodic Theory, Dynamical Systems, and The Continuing Influence of John C. Oxtoby, Contemp. Math. 678, Amer. Math. Soc., Providence, RI, 2016, 73-101. · Zbl 1364.37025
[25] R. Cerf and J. Dalmau, Galton-Watson and branching process representations of the normalized Perron-Frobenius eigenvector, ESAIM Probab. Statist. 23 (2019), 797-802. · Zbl 1506.60091
[26] T. Chaysri and D. Noutsos, On the Perron-Frobenius theory of Mv-matrices and equivalent properties to eventually exponentially non-negative matrices, Electron. J. Linear Algebra 35 (2019), 424-440. · Zbl 1470.15029
[27] X. S. Chen, S.-W. Vong, W. Li, and H. Xu, Noda iterations for generalized eigen-problems following Perron-Frobenius theory, Numer. Algorithms 80 (2019), 937-955. · Zbl 1530.65041
[28] + 20] N. Chi, F. Hu, G. Li, Ch. Wang, and W. Niu, AI based on frequency slicing deep neural network for underwater visible light communication, Sci. China Inf. Sci. 63 (2020), no. 6, art. 160303. · doi:10.1007/s11432-020-2851-0
[29] I. Cho, Algebras, Graphs and Their Applications, edited by P. E. T. Jorgensen, CRC Press, Boca Raton, FL, 2014. · Zbl 1282.05002
[30] F. Chung, Random walks and local cuts in graphs, Linear Algebra Appl. 423 (2007), 22-32. · Zbl 1115.05054
[31] F. Chung, Graph theory in the information age, Notices Amer. Math. Soc. 57 (2010), 726-732. · Zbl 1274.05461
[32] F. Chung, From quasirandom graphs to graph limits and graphlets, Adv. Appl. Math. 56 (2014), 135-174. · Zbl 1300.05281
[33] F. Chung and R. Graham, Edge flipping in graphs, Adv. Appl. Math. 48 (2012), 37-63. · Zbl 1234.05210
[34] F. Chung and F. Kenter, Discrepancy inequalities for directed graphs, Discrete Appl. Math. 176 (2014), 30-42. · Zbl 1298.05142
[35] L. Cioletti, E. Silva, and M. Stadlbauer, Thermodynamic formalism for topologi-cal Markov chains on standard Borel spaces, Discrete Contin. Dynam. Systems 39 (2019), 6277-6298. · Zbl 1436.37045
[36] A. Connes and W. Krieger, Measure space automorphisms, the normalizers of their full groups, and approximate finiteness, J. Funct. Anal. 24 (1977), 336-352. · Zbl 0369.28013
[37] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaȋ, Ergodic Theory, Grundlehren Math. Wiss. 245, Springer, New York, 1982. · Zbl 0493.28007
[38] S. Dey and H. Trivedi, Bures distance and transition probability for α-CPD-kernels, Complex Anal. Oper. Theory 13 (2019), 2171-2190. · Zbl 1433.46020
[39] A. H. Dooley and T. Hamachi, Nonsingular dynamical systems, Bratteli diagrams and Markov odometers, Israel J. Math. 138 (2003), 93-123. · Zbl 1061.37001
[40] R. Douc, E. Moulines, P. Priouret, and P. Soulier, Markov Chains, Springer Ser. Oper. Res. Financ. Engrg., Springer, Cham, 2018. · Zbl 1429.60002
[41] R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), 193-225. · Zbl 0803.28009
[42] N. Dunford and J. T. Schwartz, Linear Operators. Part II: Selfadjoint Operators in Hilbert Space, reprint of the 1963 original, Wiley Classics Library, Wiley, New York, 1988, Spectral Theory. · Zbl 0635.47002
[43] M. M. Dunlop, D. Slepčev, A. M. Stuart, and M. Thorpe, Large data and zero noise limits of graph-based semi-supervised learning algorithms, Appl. Comput. Harmon. Anal. 49 (2020), 655-697. · Zbl 1442.62768
[44] F. Durand, Combinatorics on Bratteli diagrams and dynamical systems, in: Combi-natorics, Automata and Number Theory, Encyclopedia Math. Appl. 135, Cambridge Univ. Press, Cambridge, 2010, 324-372. · Zbl 1272.37006
[45] F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli dia-grams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993. · Zbl 1044.46543
[46] D. E. Dutkay and P. E. T. Jorgensen, Spectral theory for discrete Laplacians, Com-plex Anal. Oper. Theory 4 (2010), 1-38. · Zbl 1222.05154
[47] C. L. Epstein and C. A. Pop, Transition probabilities for degenerate diffusions arising in population genetics, Probab. Theory Related Fields 173 (2019), 537-603. · Zbl 1417.35040
[48] R. S. Falk and R. D. Nussbaum, C m eigenfunctions of Perron-Frobenius operators and a new approach to numerical computation of Hausdorff dimension: applications in R 1 , J. Fractal Geom. 5 (2018), 279-337. · Zbl 1436.37031
[49] S. Ferenczi, Substitution dynamical systems on infinite alphabets, Ann. Inst. Fourier (Grenoble) 56 (2006), 2315-2343. · Zbl 1147.37007
[50] A. H. Forrest, K-groups associated with substitution minimal systems, Israel J. Math. 98 (1997), 101-139. · Zbl 0891.46042
[51] S. B. Frick and K. Petersen, Reinforced random walks and adic transformations, J. Theoret. Probab. 23 (2010), 920-943. · Zbl 1217.37004
[52] W. Gao and C. Su, Analysis on block chain financial transaction under artificial neural network of deep learning, J. Comput. Appl. Math. 380 (2020), art. 112991, 13 pp. · Zbl 1443.91288
[53] A. Gautier, F. Tudisco, and M. Hein, The Perron-Frobenius theorem for multiho-mogeneous mappings, SIAM J. Matrix Anal. Appl. 40 (2019), 1179-1205. · Zbl 07122458
[54] A. Georgakopoulos, Uniqueness of electrical currents in a network of finite total resistance, J. London Math. Soc. (2) 82 (2010), 256-272. · Zbl 1209.05116
[55] O. Giladi and B. S. Rüffer, A Perron-Frobenius type result for integer maps and applications, Positivity 23 (2019), 545-570. · Zbl 1442.39024
[56] T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C * -crossed products, J. Reine Angew. Math. 469 (1995), 51-111. · Zbl 0834.46053
[57] B. Hanin and M. Nica, Products of many large random matrices and gradients in deep neural networks, Comm. Math. Phys. 376 (2020), 287-322. · Zbl 1446.60007
[58] R. H. Herman, I. F. Putnam, and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864. · Zbl 0786.46053
[59] S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Logic 2 (2002), 1-80. · Zbl 1008.03031
[60] P. E. T. Jorgensen, Analysis and Probability: Wavelets, Signals, Fractals, Grad. Texts in Math. 234, Springer, New York, 2006. · Zbl 1104.42001
[61] P. E. T. Jorgensen, Unbounded graph-Laplacians in energy space, and their exten-sions, J. Appl. Math. Comput. 39 (2012), 155-187. · Zbl 1483.47124
[62] P. E. T. Jorgensen and E. P. J. Pearse, Operator theory of electrical resistance net-works, arXiv:0806.3881 (2008).
[63] P. E. T. Jorgensen and E. P. J. Pearse, A Hilbert space approach to effective resistance metric, Complex Anal. Operator Theory 4 (2010), 975-1013. · Zbl 1209.05144
[64] P. E. T. Jorgensen and E. P. J. Pearse, Resistance boundaries of infinite networks, in: Random Walks, Boundaries and Spectra, Progr. Probab. 64, Birkhäuser, Basel, 2011, 111-142. · Zbl 1223.05175
[65] P. E. T. Jorgensen and E. P. J. Pearse, A discrete Gauss-Green identity for un-bounded Laplace operators, and the transience of random walks, Israel J. Math. 196 (2013), 113-160. · Zbl 1275.05054
[66] P. E. T. Jorgensen and E. P. J. Pearse, Symmetric pairs and self-adjoint extensions of operators, with applications to energy networks, Complex Anal. Oper. Theory 10 (2016), 1535-1550. · Zbl 1353.05080
[67] P. E. T. Jorgensen and E. P. J. Pearse, Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics, Math. Phys. Anal. Geom. 20 (2017), no. 2, art. 14, 24 pp. · Zbl 1424.47055
[68] P. E. T. Jorgensen and E. P. J. Pearse, Continuum versus discrete networks, graph Laplacians, and reproducing kernel Hilbert spaces, J. Math. Anal. Appl. 469 (2019), 765-807. · Zbl 1397.05176
[69] P. Jorgensen, E. Pearse, and F. Tian, Unbounded operators in Hilbert space, duality rules, characteristic projections, and their applications, Anal. Math. Phys. 8 (2018), 351-382. · Zbl 1511.47030
[70] P. Jorgensen and F. Tian, Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses, J. Mach. Learn. Res. 16 (2015), 3079-3114. · Zbl 1351.46021
[71] P. Jorgensen and F. Tian, Nonuniform sampling, reproducing kernels, and the asso-ciated Hilbert spaces, Sampl. Theory Signal Image Process. 15 (2016), 37-72. · Zbl 1393.47047
[72] P. Jorgensen and F. Tian, On reproducing kernels, and analysis of measures, Markov Process. Related Fields 25 (2019), 445-482. · Zbl 07116991
[73] P. Jorgensen and F. Tian, Realizations and factorizations of positive definite kernels, J. Theoret. Probab. 32 (2019), 1925-1942. · Zbl 07120204
[74] T. Kato, Perturbation Theory for Linear Operators, reprint of the 1980 edition, Classics in Math., Springer, Berlin, 1995. · Zbl 0836.47009
[75] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. · Zbl 0819.04002
[76] D. Kerr and H. Li, Ergodic Theory. Independence and Dichotomies, Springer Monogr. Math., Springer, Cham, 2016. · Zbl 1396.37001
[77] J. Kigami, Analysis on Fractals, Cambridge Tracts in Math. 143, Cambridge Univ. Press, Cambridge, 2001. · Zbl 0998.28004
[78] B. P. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided and Countable State Mar-kov Shifts, Universitext, Springer, Berlin, 1998. · Zbl 0892.58020
[79] A. Klenke, Probability Theory. A Comprehensive Course, 2nd ed., Universitext, Springer, London, 2014. · Zbl 1295.60001
[80] N. B. Kovachki and A. M. Stuart, Ensemble Kalman inversion: a derivative-free technique for machine learning tasks, Inverse Problems 35 (2019), no. 9, art. 095005, 35 pp. · Zbl 1430.68266
[81] D. Kunszenti-Kovács, L. Lovász, and B. Szegedy, Measures on the square as sparse graph limits, J. Combin. Theory Ser. B 138 (2019), 1-40. · Zbl 1415.05099
[82] A. J. Lazar and D. C. Taylor, Approximately finite-dimensional C * -algebras and Bratteli diagrams, Trans. Amer. Math. Soc. 259 (1980), 599-619. · Zbl 0437.46046
[83] + 16] X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang, Deepsaliency: multi-task deep neural network model for salient object detection, IEEE Trans. Image Process. 25 (2016), 3919-3930. · Zbl 1408.94420 · doi:10.1109/TIP.2016.2579306
[84] L. Lovász, Large Networks and Graph Limits, Amer. Math. Soc. Colloq. Publ. 60, Amer. Math. Soc., Providence, RI, 2012. · Zbl 1292.05001
[85] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge Ser. Statist. Probab. Math. 42, Cambridge Univ. Press, New York, 2016. · Zbl 1376.05002
[86] K. Medynets, Cantor aperiodic systems and Bratteli diagrams, C. R. Math. Acad. Sci. Paris 342 (2006), 43-46. · Zbl 1081.37004
[87] M. G. Nadkarni, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 3. · Zbl 0733.28009
[88] M. G. Nadkarni, Basic Ergodic Theory, Texts and Read. Math. 6, Hindustan Book Agency, Delhi, 1995. · Zbl 0908.28014
[89] E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cam-bridge Tracts in Math. 83, Cambridge Univ. Press, Cambridge, 1984. · Zbl 0551.60066
[90] V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge Stud. Adv. Math. 152, Cambridge Univ. Press, Cambridge, 2016. · Zbl 1364.46004
[91] C. Petit, Harmonic functions on hyperbolic graphs, Proc. Amer. Math. Soc. 140 (2012), 235-248. · Zbl 1246.31003
[92] N. C. Phillips, Crossed products of the Cantor set by free minimal actions of Z d , Comm. Math. Phys. 256 (2005), 1-42. · Zbl 1084.46056
[93] I. F. Putnam, Cantor Minimal Systems, Univ. Lecture Ser. 70, Amer. Math. Soc., Providence, RI, 2018. · Zbl 1396.37002
[94] J. Renault, Random walks on Bratteli diagrams, in: Operator Theory: Themes and Variations, Theta Ser. Adv. Math. 20, Theta, Bucharest, 2018, 187-204. · Zbl 1538.22004
[95] D. Revuz, Markov Chains, 2nd ed., North-Holland Math. Library 11, North-Holland, Amsterdam, 1984. · Zbl 0539.60073
[96] V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N. S. 25 (67) (1949), 107-150. · Zbl 0033.16904
[97] S. Saitoh and Y. Sawano, Theory of reproducing kernels and applications, Dev. Math. 44, Springer, Singapore, 2016. · Zbl 1358.46004
[98] K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Grad. Texts in Math. 265, Springer, Dordrecht, 2012. · Zbl 1257.47001
[99] D. Simmons, Conditional measures and conditional expectation; Rohlin’s disintegra-tion theorem, Discrete Contin. Dynam. Systems 32 (2012), 2565-2582. · Zbl 1244.28002
[100] S. N. Smirnov, A Feller transition kernel with measure supports given by a set-valued mapping, Tr. Inst. Mat. Mekh. 25 (2019), 219-228 (in Russian);
[101] English transl.: Proc. Steklov Inst. Math. 308 (2020), 188-195. · Zbl 1448.60011
[102] J. Sum and C.-S. Leung, Learning algorithm for Boltzmann machines with additive weight and bias noise, IEEE Trans. Neural Netw. Learn. Syst. 30 (2019), 3200-3204. [SSQ + 20] G. Sun, Y. Su, C. Qin, W. Xu, X. Lu, and A. Ceglowski, Complete defense framework to protect deep neural networks against adversarial examples, Math. Probl. Engrg. 2020, art. 8319249, 17 pp. · doi:10.1155/2020/8319249
[103] M. Takesaki, Theory of Operator Algebras. III, Encyclopaedia Math. Sci. 127, Op-erator Algebras and Non-commutative Geometry 8, Springer, Berlin, 2003. · Zbl 0990.46034
[104] A. Venkitaraman, S. Chatterjee, and P. Händel, Predicting graph signals using kernel regression where the input signal is agnostic to a graph, IEEE Trans. Signal Inform. Process. Netw. 5 (2019), 698-710.
[105] A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Dokl. Akad. Nauk SSSR 259 (1981), 526-529 (in Russian). · Zbl 0484.47005
[106] A. M. Vershik, Equipped graded graphs, projective limits of simplices, and their boundaries, J. Math. Sci. (N.Y.) 209 (2015), 860-873. · Zbl 1323.05127
[107] M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Stud. Adv. Math. 151, Cambridge Univ. Press, Cambridge, 2016. · Zbl 1369.37001
[108] Y. Xia, Research on statistical machine translation model based on deep neural net-work, Computing 102 (2020), 643-661. · Zbl 1459.68219
[109] Y. Xiao, C.-M. Pun, and B. Liu, Adversarial example generation with adaptive gra-dient search for single and ensemble deep neural network, Inform. Sci. 528 (2020), 147-167.
[110] G. Yang and F. Ding, Associative memory optimized method on deep neural networks for image classification, Inform. Sci. 533 (2020), 108-119.
[111] Y. Yankelevsky and M. Elad, Finding GEMS: multi-scale dictionaries for high-dimensional graph signals, IEEE Trans. Signal Process. 67 (2019), 1889-1901. · Zbl 1458.94154
[112] R. J. Zerr, Minimal Bratteli diagrams and the dimension groups of AF C * -algebras, Int. J. Math. Math. Sci. 2006, art. 65737, 13 pp. · Zbl 1123.46042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.