×

Realizations and factorizations of positive definite kernels. (English) Zbl 07120204

Summary: Given a fixed sigma-finite measure space \((X, \mathcal{B},\nu)\), we shall study an associated family of positive definite kernels \(K\). Their factorizations will be studied with view to their role as covariance kernels of a variety of stochastic processes. In the interesting cases, the given measure \(\nu\) is infinite, but sigma-finite. We introduce such positive definite kernels \(K(\cdot,\cdot)\) with the two variables from the subclass of the sigma-algebra \(\mathcal{B}\) whose elements are sets with finite \(\nu\) measure. Our setting and results are motivated by applications. The latter are covered in the second half of the paper. We first make precise the notions of realizations and factorizations for \(K\), and we give necessary and sufficient conditions for \(K\) to have realizations and factorizations in \(L^2(\nu)\). Tools in the proofs rely on probability theory and on spectral theory for unbounded operators in Hilbert space. Applications discussed here include the study of reversible Markov processes, and realizations of Gaussian fields, and their Ito-integrals.

MSC:

47L60 Algebras of unbounded operators; partial algebras of operators
46N30 Applications of functional analysis in probability theory and statistics
65R10 Numerical methods for integral transforms
42C15 General harmonic expansions, frames
31C20 Discrete potential theory

References:

[1] Alpay, D.; Bolotnikov, V.; Dijksma, A.; Snoo, H.; Gheondea, A. (ed.); Timotin, D. (ed.); Vasilescu, F-H (ed.), On some operator colligations and associated reproducing kernel Hilbert spaces, No. 61, 1-27 (1993), Basel · Zbl 0794.47006
[2] Alpay, D.; Dym, H.; Ando, T. (ed.); Gohberg, I. (ed.), On reproducing kernel spaces, the Schur algorithm, and interpolation in a general class of domains, No. 59, 30-77 (1992), Basel · Zbl 0793.47010 · doi:10.1007/978-3-0348-8606-2_3
[3] Alpay, D., Dym, H.: On a new class of structured reproducing kernel spaces. J. Funct. Anal. 111(1), 1-28 (1993) · Zbl 0813.46018 · doi:10.1006/jfan.1993.1001
[4] Alpay, D., Jorgensen, P., Seager, R., Volok, D.: On discrete analytic functions: products, rational functions and reproducing kernels. J. Appl. Math. Comput. 41(1-2), 393-426 (2013) · Zbl 1295.30107 · doi:10.1007/s12190-012-0608-2
[5] Alpay, D., Jorgensen, P.E.T.: Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 33(7-9), 708-735 (2012) · Zbl 1260.60137 · doi:10.1080/01630563.2012.682132
[6] Aronszajn, N.: La théorie des noyaux reproduisants et ses applications. I. Proc. Camb. Philos. Soc. 39, 133-153 (1943) · Zbl 0061.26204 · doi:10.1017/S0305004100017813
[7] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337-404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[8] Ayache, A., Linde, W.: Approximation of Gaussian random fields: general results and optimal wavelet representation of the Lévy fractional motion. J. Theor. Probab. 21(1), 69-96 (2008) · Zbl 1140.60028 · doi:10.1007/s10959-007-0101-2
[9] Bishop, C.J., Peres, Y.: Fractals in Probability and Analysis, Volume 162 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2017) · Zbl 1390.28012 · doi:10.1017/9781316460238
[10] Chang, X., Xu, H., Yau, S.-T.: Spanning trees and random walks on weighted graphs. Pac. J. Math. 273(1), 241-255 (2015) · Zbl 1307.05207 · doi:10.2140/pjm.2015.273.241
[11] Dunford, N., Schwartz, J.T.: Linear Operators. Part II. Wiley Classics Library. Wiley, New York (1988). Spectral theory. Selfadjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication · Zbl 0635.47002
[12] Dutkay, D.E., Jorgensen, P.E.T.: Affine fractals as boundaries and their harmonic analysis. Proc. Am. Math. Soc. 139(9), 3291-3305 (2011) · Zbl 1230.47045 · doi:10.1090/S0002-9939-2011-10752-4
[13] El Machkouri, M., Es-Sebaiy, K., Ouassou, I.: On local linear regression for strongly mixing random fields. J. Multivar. Anal. 156, 103-115 (2017) · Zbl 1391.62055 · doi:10.1016/j.jmva.2017.02.002
[14] Haeseler, S., Keller, M., Lenz, D., Masamune, J., Schmidt, M.: Global properties of Dirichlet forms in terms of Green’s formula. ArXiv e-prints (2014) · Zbl 1377.31005
[15] Hersonsky, S.: Boundary value problems on planar graphs and flat surfaces with integer cone singularities, I: the Dirichlet problem. J. Reine Angew. Math. 670, 65-92 (2012) · Zbl 1296.53077
[16] Jørsboe, O.G.: Equivalence or Singularity of Gaussian Measures on Function Spaces. Various Publications Series, No. 4. Aarhus Universitet, Aarhus, Matematisk Institut (1968) · Zbl 0226.46045
[17] Jorgensen, P., Tian, F.: Infinite weighted graphs with bounded resistance metric. ArXiv e-prints, February (2015) · Zbl 1401.05200
[18] Jorgensen, P., Tian, F.: Metric duality between positive definite kernels and boundary processes. ArXiv e-prints, June (2017) · Zbl 1393.46022
[19] Jorgensen, P., Tian, F.: Reproducing kernels and choices of associated feature spaces, in the form of \[L^2\] L2-spaces. ArXiv e-prints, July (2017) · Zbl 1493.47032
[20] Jorgensen, P., Pedersen, S., Tian, F.: Extensions of Positive Definite Functions, Volume 2160 of Lecture Notes in Mathematics. Springer, Cham (2016). Applications and their harmonic analysis · Zbl 1355.43001
[21] Jorgensen, P., Tian, F.: Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses. J. Mach. Learn. Res. 16, 3079-3114 (2015) · Zbl 1351.46021
[22] Jorgensen, P., Tian, F.: Graph Laplacians and discrete reproducing kernel Hilbert spaces from restrictions. Stoch. Anal. Appl. 34(4), 722-747 (2016) · Zbl 1380.46020 · doi:10.1080/07362994.2016.1170613
[23] Jorgensen, P., Tian, F.: Positive definite kernels and boundary spaces. Adv. Oper. Theory 1(1), 123-133 (2016) · Zbl 1359.42004
[24] Jorgensen, P., Tian, F.: Non-commutative Analysis. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017). With a foreword by Wayne Polyzou · Zbl 1371.46003 · doi:10.1142/10317
[25] Jorgensen, P.E.T., Pedersen, S., Tian, F.: Harmonic analysis of a class of reproducing kernel Hilbert spaces arising from groups. In: Christensen, J.G., Dann, S., Mayeli, A., Ólafsson, G. (eds.) Trends in Harmonic Analysis and Its Applications. Contemporary Mathematics, vol. 650, pp. 157-197. American Mathematical Society, Providence (2015) · Zbl 1359.43004
[26] Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition · Zbl 0836.47009 · doi:10.1007/978-3-642-66282-9
[27] Korshunov, D.: The key renewal theorem for a transient Markov chain. J. Theor. Probab. 21(1), 234-245 (2008) · Zbl 1135.60052 · doi:10.1007/s10959-007-0132-8
[28] Kurien, T.V., Sethuraman, J.: Singularities in Gaussian random fields. J. Theor. Probab. 6(1), 89-99 (1993) · Zbl 0764.60051 · doi:10.1007/BF01046770
[29] Lata, S., Mittal, M., Paulsen, V.I.: An operator algebraic proof of Agler’s factorization theorem. Proc. Am. Math. Soc. 137(11), 3741-3748 (2009) · Zbl 1188.46035 · doi:10.1090/S0002-9939-09-09928-6
[30] Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.: Kernel mean shrinkage estimators. J. Mach. Learn. Res. 17(48), 41 (2016) · Zbl 1360.62134
[31] Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Volume 152 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016) · Zbl 1364.46004 · doi:10.1017/CBO9781316219232
[32] Peres, Y., Schapira, B., Sousi, P.: Martingale defocusing and transience of a self-interacting random walk. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1009-1022 (2016) · Zbl 1350.60105 · doi:10.1214/14-AIHP667
[33] Roblin, T.: Comportement harmonique des densités conformes et frontière de Martin. Bull. Soc. Math. Fr. 139(1), 97-128 (2011) · Zbl 1217.37047 · doi:10.24033/bsmf.2602
[34] Rodgers, G.J., Austin, K., Kahng, B., Kim, D.: Eigenvalue spectra of complex networks. J. Phys. A 38(43), 9431-9437 (2005) · Zbl 1087.05053 · doi:10.1088/0305-4470/38/43/003
[35] Saitoh, S.: A reproducing kernel theory with some general applications. In: Qian, T., Rodino, L. (eds.) Mathematical Analysis, Probability and Applications—Plenary Lectures. ISAAC 2015. Springer Proceedings in Mathematics & Statistics, vol. 177, pp. 151-182. Springer, Cham (2016) · Zbl 1394.46020
[36] Sidje, R.B., Burrage, K., Macnamara, S.: Inexact uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562-2580 (2007) · Zbl 1154.65300 · doi:10.1137/060662629
[37] Skopenkov, M.: The boundary value problem for discrete analytic functions. Adv. Math. 240, 61-87 (2013) · Zbl 1278.39008 · doi:10.1016/j.aim.2013.03.002
[38] Smale, S., Zhou, D.-X.: Shannon sampling and function reconstruction from point values. Bull. Am. Math. Soc. (N.S.) 41(3), 279-305 (2004) · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0
[39] Smale, S., Zhou, D.-X.: Geometry on probability spaces. Constr. Approx. 30(3), 311-323 (2009) · Zbl 1187.68270 · doi:10.1007/s00365-009-9070-2
[40] Takeda, M.: A large deviation principle for symmetric Markov processes with Feynman-Kac functional. J. Theor. Probab. 24(4), 1097-1129 (2011) · Zbl 1237.60065 · doi:10.1007/s10959-010-0324-5
[41] Tosiek, J., Brzykcy, P.: States in the Hilbert space formulation and in the phase space formulation of quantum mechanics. Ann. Phys. 332, 1-15 (2013) · Zbl 1342.81027 · doi:10.1016/j.aop.2013.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.