×

The structure of hyperfinite Borel equivalence relations. (English) Zbl 0803.28009

The paper studies equivalence relations induced by the orbits of a single Borel automorphism on a standard Borel space. They are called hyperfinite. It is shown that any two such equivalence relations which are not smooth (i.e., do not admit Borel selectors) are Borel embeddable into each other. This uses work of Effros and Weiss. The result is applied to derive a classification of hyperfinite Borel equivalence relations under two different notions of equivalence. It is shown that the cardinality of the set of invariant ergodic measures is a complete invariant for Borel isomorphisms of aperiodic nonsmooth such equivalence relations. A number of canonical examples is discussed.

MSC:

28D05 Measure-preserving transformations
03E15 Descriptive set theory
Full Text: DOI

References:

[1] Scot Adams, An equivalence relation that is not freely generated, Proc. Amer. Math. Soc. 102 (1988), no. 3, 565 – 566. · Zbl 0643.28015
[2] Pradeep Chaube and M. G. Nadkarni, A version of Dye’s theorem for descriptive dynamical systems, Sankhyā Ser. A 49 (1987), no. 3, 288 – 304. P. Chaube and M. G. Nadkarni, Corrigendum: ”A version of Dye’s theorem for descriptive dynamical systems”, Sankhyā Ser. A 51 (1989), no. 2, 241 – 242. · Zbl 0644.28014
[3] P. Chaube and M. G. Nadkarni, On orbit equivalence of Borel automorphisms, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 3, 255 – 261. · Zbl 0745.28007 · doi:10.1007/BF02864398
[4] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), no. 4, 431 – 450 (1982). · Zbl 0491.28018
[5] H. A. Dye, On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119 – 159. · Zbl 0087.11501 · doi:10.2307/2372852
[6] Edward G. Effros, Transformation groups and \?*-algebras, Ann. of Math. (2) 81 (1965), 38 – 55. · Zbl 0152.33203 · doi:10.2307/1970381
[7] Edward G. Effros, Polish transformation groups and classification problems, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 217 – 227.
[8] Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289 – 324. , https://doi.org/10.1090/S0002-9947-1977-0578656-4 Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325 – 359. · Zbl 0369.22009
[9] Nathaniel A. Friedman, Introduction to ergodic theory, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. Van Nostrand Reinhold Mathematical Studies, No. 29. · Zbl 0212.40004
[10] Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 238, Springer-Verlag, New York-Berlin, 1979. · Zbl 0439.43001
[11] Toshihiro Hamachi and Motosige Osikawa, Ergodic groups of automorphisms and Krieger’s theorems, Seminar on Mathematical Sciences, vol. 3, Keio University, Department of Mathematics, Yokohama, 1981. · Zbl 0472.28015
[12] L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903 – 928. · Zbl 0778.28011
[13] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. · Zbl 0307.28001
[14] Witold Hurewicz, Ergodic theorem without invariant measure, Ann. of Math. (2) 45 (1944), 192 – 206. · Zbl 0063.02944 · doi:10.2307/1969081
[15] Yitzhak Katznelson and Benjamin Weiss, The construction of quasi-invariant measures, Israel J. Math. 12 (1972), 1 – 4. · Zbl 0237.28011 · doi:10.1007/BF02764806
[16] Alexander S. Kechris, Amenable equivalence relations and Turing degrees, J. Symbolic Logic 56 (1991), no. 1, 182 – 194. · Zbl 0734.03028 · doi:10.2307/2274913
[17] Alexander S. Kechris, The structure of Borel equivalence relations in Polish spaces, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 89 – 102. · Zbl 0779.03016 · doi:10.1007/978-1-4613-9754-0_7
[18] Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283 – 295. · Zbl 0761.28014 · doi:10.1017/S0143385700006751
[19] Ju. I. Kifer and S. A. Pirogov, The decomposition of quasi-invariant measures into ergodic components, Uspehi Mat. Nauk 27 (1972), no. 5(167), 239 – 240 (Russian). · Zbl 0248.28014
[20] Wolfgang Krieger, On non-singular transformations of a measure space. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 83-97; ibid. 11 (1969), 98 – 119. · Zbl 0185.11901 · doi:10.1007/BF00531811
[21] Wolfgang Krieger, On quasi-invariant measures in uniquely ergodic systems, Invent. Math. 14 (1971), 184 – 196. · Zbl 0219.54038 · doi:10.1007/BF01418888
[22] Wolfgang Krieger, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), no. 1, 19 – 70. · Zbl 0332.46045 · doi:10.1007/BF01360278
[23] Gustave Choquet, Topology, Translated from the French by Amiel Feinstein. Pure and Applied Mathematics, Vol. XIX, Academic Press, New York-London, 1966. · Zbl 0132.17603
[24] R. Daniel Mauldin and S. M. Ulam, Mathematical problems and games, Adv. in Appl. Math. 8 (1987), no. 3, 281 – 344. · Zbl 0642.00001 · doi:10.1016/0196-8858(87)90026-1
[25] Calvin C. Moore, Ergodic theory and von Neumann algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 179 – 226.
[26] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. · Zbl 0433.03025
[27] M. G. Nadkarni, Descriptive ergodic theory, Measure and measurable dynamics (Rochester, NY, 1987) Contemp. Math., vol. 94, Amer. Math. Soc., Providence, RI, 1989, pp. 191 – 206. · doi:10.1090/conm/094/1012990
[28] M. G. Nadkarni, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 3, 203 – 220. · Zbl 0733.28009
[29] -, Orbit equivalence and Kakutani equivalence in descriptive setting,, reprint, 1991.
[30] Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Company of India, Ltd., Delhi, 1977. Macmillan Lectures in Mathematics, Vol. 1. · Zbl 0421.28017
[31] Klaus Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. · Zbl 0719.28006
[32] Theodore A. Slaman and John R. Steel, Definable functions on degrees, Cabal Seminar 81 – 85, Lecture Notes in Math., vol. 1333, Springer, Berlin, 1988, pp. 37 – 55. · Zbl 0677.03038 · doi:10.1007/BFb0084969
[33] Dennis Sullivan, B. Weiss, and J. D. Maitland Wright, Generic dynamics and monotone complete \?*-algebras, Trans. Amer. Math. Soc. 295 (1986), no. 2, 795 – 809. · Zbl 0617.46069
[34] C. Sutherland, Orbit equivalence: lectures on Krieger’s theorem, Univ. of Oslo Lecture Note Series, no. 23, 1976.
[35] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191 – 220. · Zbl 0192.14203
[36] A. M. Vershik, The action of \( PSL(2,\mathbb{R})\) on \( {P_1}\mathbb{R}\) is approximable, Russian Math. Surveys (1) 33 (1978), 221-222. · Zbl 0399.28008
[37] -, Trajectory theory, Dynamical Systems. II , Springer-Verlag, 1989, pp. 77-98.
[38] V. M. Wagh, A descriptive version of Ambrose’s representation theorem for flows, Proc. Indian Acad. Sci. Math. Sci. 98 (1988), no. 2-3, 101 – 108. · Zbl 0669.28008 · doi:10.1007/BF02863630
[39] Benjamin Weiss, Orbit equivalence of nonsingular actions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) Monograph. Enseign. Math., vol. 29, Univ. Genève, Geneva, 1981, pp. 77 – 107. · Zbl 0479.28018
[40] Benjamin Weiss, Measurable dynamics, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 395 – 421. · Zbl 0599.28023 · doi:10.1090/conm/026/737417
[41] -, Countable generators in dynamics–universal minimal models, Measure and Measurable Dynamics , Contemp. Math., vol. 94, Amer. Math. Soc., Providence, RI, 1989, pp. 321-326. · Zbl 0754.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.