×

Pluricomplex Green functions on Stein manifolds and certain linear topological invariants. (English) Zbl 1522.32075

Summary: In this paper, we explore the existence of pluricomplex Green functions for Stein manifolds from a functional analysis point of view. For a Stein manifold \(M\), we will denote by \(O(M)\) the Fréchet space of analytic functions on \(M\) equipped with the topology of uniform convergence on compact subsets. In the first section, we examine the relationship between existence of pluricomplex Green functions and the diametral dimension of \(O(M)\). This led us to consider negative plurisubharmonic functions on \(M\) with a nontrivial relatively compact sublevel set (semi-proper). In Section 2, we characterize Stein manifolds possessing a semi-proper negative plurisubharmonic function through a local, controlled approximation type condition, which can be considered as a local version of the linear topological invariant \(\widetilde{\Omega}\) of Vogt. In Section 3, we look into pluri-Greenian and locally uniformly pluri-Greenian complex manifolds introduced by Poletsky. We show that a complex manifold is locally uniformly pluri-Greenian if and only if it is pluri-Greenian and give a characterization of locally uniformly pluri-Greenian Stein manifolds in terms of the notions introduced in Section 2.
{© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.}

MSC:

32U35 Plurisubharmonic extremal functions, pluricomplex Green functions
32Q28 Stein manifolds
32A70 Functional analysis techniques applied to functions of several complex variables
46E10 Topological linear spaces of continuous, differentiable or analytic functions

References:

[1] A.Aytuna, On stein manifolds \(M\) for which \(\mathcal{O}(M)\) is isomorphic to \(\mathcal{O}(\Delta^n)\) as Fréchet spaces, Manuscripta Math.62 (1988), no. 3, 297-315. · Zbl 0662.32014
[2] A.Aytuna, Stein Spaces \(M\) for which \(\mathcal{O}(M)\) is isomorphic to a power series space, in T.Terzioğlu (ed.) (ed.), Advances in the theory of Fréchet spaces, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 287, Springer, Dordrecht, 1989, pp. 115-154. · Zbl 0743.46017
[3] A.Aytuna, Stein manifolds \(M\) for which \(\mathcal{O}(M)\) has the property \(\widetilde{\Omega } \), Math. Forum7 (2013), 45-57.
[4] A.Aytuna, Tameness in Fréchet spaces of analytic functions, Studia Math.232 (2016). · Zbl 1382.46007
[5] A.Aytuna, J.Krone, and T.Terzioğlu, Imbedding of power series spaces and spaces of analytic functions, Manuscripta Math.67 (1990), 125-142. · Zbl 0724.46009
[6] A.Aytuna and A.Sadullaev, Parabolic Stein manifolds, Math. Scand.114 (2014), 86-109. · Zbl 1288.32036
[7] A.Aytuna and T.Terzioğlu, Some applications of a decomposition method, in K. D.Bierstedt (ed.), J.Bonet (ed.), and J.Horváth (ed.) (eds.), Progress in functional analysis, Noth‐Holland Math. Stud., vol. 170, Elsevier, Amsterdam, 1992, pp. 85-95. · Zbl 0781.46013
[8] B. Y.Chen and J.H Zhang, The Bergman metric on a Stein manifold with a bounded plurisubharmonic function, Trans. Amer. Math. Soc.354 (2002), 2997-3009. · Zbl 0997.32011
[9] J. P.Demailly, Mesures de Monge‐Ampère et mesures pluriharmoniques, Math. Z.194 (1987), 519-564. · Zbl 0595.32006
[10] L.Demeulenaere, L.Frerick, and J.Wengenroth, Diametral dimensions of Fréchet spaces, Studia Math.234 (2016), no. 3, 271-280. · Zbl 1361.46003
[11] S.Dineen, R.Meise, and D.Vogt, Characterization of nuclear Fréchet spaces in which every bounded set is polar, Bull. Soc. Math. France112 (1984), 41-68. · Zbl 0556.46003
[12] T.Harz, N.Shcherbina, and G.Tomassini, On defining functions and cores for unbounded domains I, Math. Z.286 (2017), 987-1002. · Zbl 1386.32030
[13] M.Klimek, Pluripotential theory, Clarendon Press Publications, 1991. · Zbl 0742.31001
[14] R.Meise and D.Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, Clarendon Press Publications, 1997. · Zbl 0924.46002
[15] A.Pietsch, Nuclear locally convex spaces, Springer, Berlin, 1972. · Zbl 0308.47024
[16] A.Pinkus, \(n\)‐Widths in approximation theory, Springer, Berlin-Heidelberg, 1985. · Zbl 0551.41001
[17] E. A.Poletsky and N.Shcherbina, Plurisubharmonically seperable complex manifolds, Proc. Amer. Math. Soc.147 (2019), 2413-2424. · Zbl 1426.32017
[18] E. A.Poletsky, Pluricomplex green functions on manifolds, J. Geom. Anal.30 (2020), no. 2, 1396-1410. · Zbl 1436.32108
[19] E.Poletsky, (Pluri)Potential Compactifications, Potential Anal.53 (2020), no. 1, 231-245. · Zbl 1473.32012
[20] S.Rolewicz, Metric linear spaces, PWN‐Polish Sci. Publ. Warszawa and Reidel Dordrecht, 1985. · Zbl 0573.46001
[21] T.Terzioğlu, On diametral dimension of some classes of F‐spaces, J. Karadeniz Univ.8 (1985), 1-13. · Zbl 0609.46001
[22] D.Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. reine angew. Math.345 (1983), 182-200. · Zbl 0514.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.