×

(Pluri)potential compactifications. (English) Zbl 1473.32012

The author constructs biholomorphically invariant compactifications for some kind of complex manifolds including bounded domains in \(\mathbb{C}^n\) by using pluricomplex Green functions, which is called the pluripotential compactification.
In order to do so, the author first shows the existence of a norming volume form V on a connected complex manifold \(M\), and then observes that all negative plurisubharmonic functions on \(M\) are in \(L^1(M,V)\) and shows that the set \(PSH^-_1(M)\) of such functions with the norm not exceeding \(1\) is compact.
Assuming \(M\) is a locally uniformly pluri-Greenian complex manifold, constructing a mapping \(\Phi_V: M\to \operatorname{PSH}^-_1(M)\), \(\Phi_V(w) =\frac{g_M(\cdot,w)}{\|g_M(\cdot,w)\|_V}\), where \(g_M(\cdot,w)\) is the pluricomplex Green function on \(M\), the author gets an imbedding of \(M\) into a compact set in \(L^1(M,V)\). The pluripotential compactification of \(M\) is then defined as the closure of \(\Phi_V(M)\) in \(L^1(M,V)\). This approach also gives the Martin compactification in the real case.
In the last section, the author computes some pluripotential compactifications for the ball, the polydisk and smooth strongly convex domains in \(\mathbb{C}^n\).

MSC:

32U05 Plurisubharmonic functions and generalizations
31C35 Martin boundary theory
32U15 General pluripotential theory

References:

[1] Armitage, DH; Gardiner, SJ, Classical potential theory (2001), Berlin: Springer, Berlin · Zbl 0972.31001
[2] Bracci, F.; Patrizio, G.; Trapani, S., The pluricomplex Poisson kernel for strongly convex domains, Trans. Amer. Math. Soc., 361, 979-1005 (2009) · Zbl 1165.32021 · doi:10.1090/S0002-9947-08-04549-2
[3] Chang, C-H; Hu, MC; Lee, H-P, Extremal analytic discs with prescribed boundary data, Trans. Amer. Math. Soc., 310, 355-369 (1988) · Zbl 0708.32006 · doi:10.1090/S0002-9947-1988-0930081-7
[4] Demailly, J-P, Mesures de Monge-Ampére et mesures pluriharmoniques, Math. Z., 194, 519-564 (1987) · Zbl 0595.32006 · doi:10.1007/BF01161920
[5] Helms, LL, Introduction to Potential Theory (1969), New York: Wiley-Interscience, New York · Zbl 0188.17203
[6] Hörmander, L., The Analysis of Linear Partial Differential Operators, I, Distribution Theory and Fourier Analysis (1983), Berlin: Springer, Berlin · Zbl 0521.35001
[7] Klimek, M., Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113, 123-142 (1985) · Zbl 0584.32037
[8] Klimek, M., Pluripotential theory (1991), Oxford: Clarendon Press, Oxford · Zbl 0742.31001
[9] Keldysch, MV; Lavrentiev, MA, Sur une évalution pour la fonction de Green, Dokl. Acad. Nauk USSR, 24, 102-103 (1939) · JFM 65.0417.02
[10] Lelong, P., Discontinuité et annulation de l’opérateur de Monge-Ampére complexe, P. Lelong-P. Dolbeault-H. Skoda analysis seminar, 1981/1983, Lecture Notes in Math, vol. 1028, 219—224-219—224 (1983), Berlin: Springer, Berlin · Zbl 0592.32014
[11] Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109, 427-474 (1981) · Zbl 0492.32025 · doi:10.24033/bsmf.1948
[12] Martin, RS, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49, 137-172 (1941) · JFM 67.0343.03 · doi:10.1090/S0002-9947-1941-0003919-6
[13] Poletsky, EA; Shabat, BV, Invariant metrics, Current problems in mathematics, Fund. Dir., 9, 73-125 (1986)
[14] Privalov, II; Kuznetsov, PK, Boundary problems and classes of harmonic and subharmonic functions in arbitrary domains, Mat. Sb., 6, 345-375 (1939)
[15] Solomentsev, ED, Boundary values of subharmonic functions, Czech. Math. J., 8, 520-534 (1958)
[16] Vladimirov, VS, Equations of Mathematical Physics (1967), Nauka: Moscow, Nauka · Zbl 0207.09101
[17] Widman, K-O, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21, 17-37 (1967) · Zbl 0164.13101 · doi:10.7146/math.scand.a-10841
[18] Zhao, ZX, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116, 309-334 (1986) · Zbl 0608.35012 · doi:10.1016/S0022-247X(86)80001-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.