×

Modern regularization methods for inverse problems. (English) Zbl 1431.65080

Summary: Regularization methods are a key tool in the solution of inverse problems. They are used to introduce prior knowledge and allow a robust approximation of ill-posed (pseudo-) inverses. In the last two decades interest has shifted from linear to nonlinear regularization methods, even for linear inverse problems. The aim of this paper is to provide a reasonably comprehensive overview of this shift towards modern nonlinear regularization methods, including their analysis, applications and issues for future research.
In particular we will discuss variational methods and techniques derived from them, since they have attracted much recent interest and link to other fields, such as image processing and compressed sensing. We further point to developments related to statistical inverse problems, multiscale decompositions and learning theory.

MSC:

65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J22 Numerical solution to inverse problems in abstract spaces
65K10 Numerical optimization and variational techniques
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

Saga; iPiano

References:

[1] R.Acar and C. R.Vogel (1994), ‘Analysis of bounded variation penalty methods for ill-posed problems’, Inverse Problems10, 1217. · Zbl 0809.35151
[2] S.Agapiou, M.Burger, M.Dashti and T.Helin (2018), ‘Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems’, Inverse Problems34, 0450002. · Zbl 06866427
[3] S.Aja-Fernandez, C.Alberola-Lopez and C. F.Westin (2008), ‘Noise and signal estimation in magnitude MRI and Rician distributed images: A LMMSE approach’, IEEE Trans. Image Process.17, 1383-1398.
[4] W. K.Allard (2007), ‘Total variation regularization for image denoising, I: Geometric theory’, SIAM J. Math. Anal.39, 1150-1190. · Zbl 1185.49047
[5] L.Ambrosio and V. M.Tortorelli (1990), ‘Approximation of functional depending on jumps by elliptic functional via t-convergence’, Commun. Pure Appl. Math.43, 999-1036. · Zbl 0722.49020
[6] L.Ambrosio, N.Fusco and D.Pallara (2000), Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press. · Zbl 0957.49001
[7] R.Anderssen (1986), The linear functional strategy for improperly posed problems. In Inverse Problems (J. R.Cannon and U.Hornung, eds), Springer, pp. 11-30. · Zbl 0603.65087
[8] H.Attouch and J.Bolte (2009), ‘On the convergence of the proximal algorithm for nonsmooth functions involving analytic features’, Math. Program.116, 5-16. · Zbl 1165.90018
[9] H.Attouch, J.Bolte and B. F.Svaiter (2013), ‘Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward – backward splitting, and regularized Gauss-Seidel methods’, Math. Program.137, 91-129. · Zbl 1260.49048
[10] H.Attouch, J.Bolte, P.Redont and A.Soubeyran (2010), ‘Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality’, Math. Oper. Res.35, 438-457. · Zbl 1214.65036
[11] G.Aubert and J.-F.Aujol (2008), ‘A variational approach to removing multiplicative noise’, SIAM J. Appl. Math.68, 925-946. · Zbl 1151.68713
[12] M.Bachmayr and M.Burger (2009), ‘Iterative total variation schemes for nonlinear inverse problems’, Inverse Problems25, 105004. · Zbl 1188.49028
[13] G.Backus and F.Gilbert (1968), ‘The resolving power of gross earth data’, Geophys. J. Internat.16, 169-205. · Zbl 0177.54102
[14] A. B.Bakushinskii (1967), ‘A general method of constructing regularizing algorithms for a linear incorrect equation in Hilbert space’, Zh. Vychisl. Mat. Mat. Fiz.7, 672-677. · Zbl 0184.19601
[15] A. B.Bakushinskii (1973), ‘On the proof of the “discrepancy principle”’, Differential and Integral Equations (Differents. i integr. un-niya), Izd-vo IGU, Irkutsk.
[16] A. B.Bakushinskii (1977), ‘Methods for solving monotonic variational inequalities, based on the principle of iterative regularization’, USSR Comput. Math. Math. Phys.17, 12-24. · Zbl 0395.49028
[17] A. B.Bakushinskii (1979), ‘On the principle of iterative regularization’, USSR Comput. Math. Math. Phys.19, 256-260. · Zbl 0451.65052
[18] A. B.Bakushinskii (1984), ‘Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion’, USSR Comput. Math. Math. Phys.24, 181-182. · Zbl 0595.65064
[19] H.Banks and K.Kunisch (1989), Estimation Techniques for Distributed Parameter Systems, Birkhäuser. · Zbl 0695.93020
[20] D. M.Bates and G.Wahba (1983), A truncated singular value decomposition and other methods for generalized cross-validation. Technical report 715, Department of Statistics, University of Wisconsin.
[21] F.Bauer, T.Hohage and A.Munk (2009), ‘Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise’, SIAM J. Numer. Anal.47, 1827-1846. · Zbl 1197.65060
[22] H. H.Bauschke, J.Bolte and M.Teboulle (2016), ���A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications’, Math. Oper. Res.42, 330-348. · Zbl 1364.90251
[23] H. H.Bauschke, J. M.Borwein and P. L.Combettes (2001), ‘Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces’, Commun. Contemp. Math.3, 615-647. · Zbl 1032.49025
[24] A.Beck and M.Teboulle (2003), ‘Mirror descent and nonlinear projected subgradient methods for convex optimization’, Oper. Res. Lett.31, 167-175. · Zbl 1046.90057
[25] M.Benning (2011), Singular regularization of inverse problems: Bregman distances and their applications to variational frameworks with singular regularization energies. PhD thesis, Westfälische Wilhelms-Universität Münster, Germany. · Zbl 1225.65091
[26] M.Benning and M.Burger (2013), ‘Ground states and singular vectors of convex variational regularization methods’, Methods Appl. Anal.20, 295-334. · Zbl 1294.49020
[27] M.Benning, M. M.Betcke, M. J.Ehrhardt and C.-B.Schönlieb (2017a), Choose your path wisely: Gradient descent in a Bregman distance framework. arXiv:1712.04045 · Zbl 1480.90197
[28] M.Benning, M. M.Betcke, M. J.Ehrhardt and C.-B.Schönlieb (2017b), Gradient descent in a generalised Bregman distance framework. In Geometric Numerical Integration and its Applications, (G. R. W.Quispel, eds), Vol. 74 of MI Lecture Notes series of Kyushu University, pp. 40-45.
[29] M.Benning, C.Brune, M.Burger and J.Müller (2013), ‘Higher-order TV methods: Enhancement via Bregman iteration’, J. Sci. Comput.54, 269-310. · Zbl 1308.94012
[30] M.Benning, G.Gilboa and C.-B.Schönlieb (2016), ‘Learning parametrised regularisation functions via quotient minimisation’, Proc. Appl. Math. Mech.16, 933-936.
[31] M.Benning, G.Gilboa, J. S.Grah and C.-B.Schönlieb (2017c), Learning filter functions in regularisers by minimising quotients. In SSVM 2017: Scale Space and Variational Methods in Computer Vision (F.Lauze, eds), Springer, pp. 511-523. · Zbl 1489.68218
[32] M.Benning, L.Gladden, D.Holland, C.-B.Schönlieb and T.Valkonen (2014), ‘Phase reconstruction from velocity-encoded MRI measurements: A survey of sparsity-promoting variational approaches’, J. Magnetic Resonance238, 26-43.
[33] M.Benning, F.Knoll, C.-B.Schönlieb and T.Valkonen (2015), Preconditioned ADMM with nonlinear operator constraint. In System Modeling and Optimization (L.Bociu, eds), Springer, pp. 117-126.
[34] M.Benning, M.Möller, R. Z.Nossek, M.Burger, D.Cremers, G.Gilboa and C.-B.Schönlieb (2017d), Nonlinear spectral image fusion. In SSVM 2017: Scale Space and Variational Methods in Computer Vision (F.Lauze, eds), Springer, pp. 41-53.
[35] M.Bergounioux (2016), ‘Mathematical analysis of a inf-convolution model for image processing’, J. Optim. Theory Appl.168, 1-21. · Zbl 1332.65030
[36] M.Bergounioux and E.Papoutsellis (2018), ‘An anisotropic inf-convolution BV type model for dynamic reconstruction’, SIAM J. Imaging Sci.11, 129-163. · Zbl 1401.65023
[37] M.Bertero and P.Boccacci (1998), Introduction to Inverse Problems in Imaging, CRC press. · Zbl 0914.65060
[38] D. P.Bertsekas (2011), Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. In Optimization for Machine Learning (S.Sra, eds), MIT Press, pp. 85-120.
[39] L.Biegler, G.Biros, O.Ghattas, M.Heinkenschloss, D.Keyes, B.Mallick, L.Tenorio, B.van Bloemen Waanders, K.Willcox and Y.Marzouk (2011), Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley. · Zbl 1203.62002
[40] N.Bissantz, T.Hohage and A.Munk (2004), ‘Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise’, Inverse Problems20, 1773. · Zbl 1077.65060
[41] N.Bissantz, T.Hohage, A.Munk and F.Ruymgaart (2007), ‘Convergence rates of general regularization methods for statistical inverse problems and applications’, SIAM J. Numer. Anal.45, 2610-2636. · Zbl 1234.62062
[42] I.Bleyer and A.Leitao (2009), ‘On Tikhonov functionals penalized by Bregman distances’, CUBO11, 99-115. · Zbl 1190.65093
[43] P.Blomgren and T. F.Chan (1998), ‘Color TV: Total variation methods for restoration of vector-valued images’, IEEE Trans. Image Process.7, 304-309.
[44] J.Bolte, A.Daniilidis and A.Lewis (2007), ‘The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems’, SIAM J. Optim.17, 1205-1223. · Zbl 1129.26012
[45] J.Bolte, A.Daniilidis, O.Ley and L.Mazet (2010), ‘Characterizations of Łojasiewicz inequalities: Subgradient flows, talweg, convexity’, Trans. Amer. Math. Soc.362, 3319-3363. · Zbl 1202.26026
[46] J.Bolte, S.Sabach and M.Teboulle (2014), ‘Proximal alternating linearized minimization for nonconvex and nonsmooth problems’, Math. Program.146, 459-494. · Zbl 1297.90125
[47] J.Bolte, S.Sabach, M.Teboulle and Y.Vaisbourd (2017), First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems. arXiv:1706.06461 · Zbl 1402.90118
[48] S.Bonettini, I.Loris, F.Porta and M.Prato (2016), ‘Variable metric inexact line-search based methods for nonsmooth optimization’, SIAM J. Optim.26, 891-921. · Zbl 1338.65157
[49] S.Bonettini, I.Loris, F.Porta, M.Prato and S.Rebegoldi (2017), ‘On the convergence of a linesearch based proximal-gradient method for nonconvex optimization’, Inverse Problems33, 055005. · Zbl 1373.65040
[50] R. I.Boţ and E. R.Csetnek (2017), ‘Proximal-gradient algorithms for fractional programming’, Optimization66, 1383-1396. · Zbl 1378.90080
[51] K.Bredies and M.Holler (2014), ‘Regularization of linear inverse problems with total generalized variation’, J. Inverse Ill-Posed Probl.22, 871-913. · Zbl 1302.65167
[52] K.Bredies and M.Holler (2015a), ‘A TGV-based framework for variational image decompression, zooming and reconstruction, I: Analytics’, SIAM J. Imaging Sci.8, 2814-2850. · Zbl 1333.94006
[53] K.Bredies and M.Holler (2015b), ‘A TGV-based framework for variational image decompression, zooming, and reconstruction, II: Numerics’, SIAM J. Imaging Sci.8, 2851-2886. · Zbl 1333.94007
[54] K.Bredies and H. K.Pikkarainen (2013), ‘Inverse problems in spaces of measures’, ESAIM Control Optim. Calc. Var.19, 190-218. · Zbl 1266.65083
[55] K.Bredies and T.Valkonen (2011), Inverse problems with second-order total generalized variation constraints. In Proceedings of SampTA 2011: 9th International Conference on Sampling Theory and Applications, Singapore.
[56] K.Bredies, K.Kunisch and T.Pock (2010), ‘Total generalized variation’, SIAM J. Imaging Sci.3, 492-526. · Zbl 1195.49025
[57] L.Bregman (1967), ‘The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming’, USSR Comp. Math. Math. Phys.7, 200-217. · Zbl 0186.23807
[58] X.Bresson and T. F.Chan (2008), ‘Fast dual minimization of the vectorial total variation norm and applications to color image processing’, Inverse Probl. Imaging2, 455-484. · Zbl 1188.68337
[59] X.Bresson, T.Laurent, D.Uminsky and J. V.Brecht (2012), Convergence and energy landscape for Cheeger cut clustering. In NIPS 2012: Advances in Neural Information Processing Systems 25 (F.Pereira, eds), Curran Associates, pp. 1385-1393.
[60] E.-M.Brinkmann, M.Burger, J.Rasch and C.Sutour (2017), ‘Bias reduction in variational regularization’, J. Math. Imaging Vision59, 534-566. · Zbl 1385.49002
[61] C.Brune, A.Sawatzky and M.Burger (2009), Bregman-EM-TV methods with application to optical nanoscopy. In SSVM 2009: Scale Space and Variational Methods in Computer Vision, (X.-C.Tai, eds), Vol. 5567 of Lecture Notes in Computer Science, Springer, pp. 235-246. · Zbl 1235.94016
[62] C.Brune, A.Sawatzky and M.Burger (2009c), Primal and dual Bregman methods with application to optical nanoscopy. CAM Report 09-47, UCLA. · Zbl 1235.94016
[63] C.Brune, A.Sawatzky and M.Burger (2011), ‘Primal and dual Bregman methods with application to optical nanoscopy’, Int. J. Comput. Vis.92, 211-229. · Zbl 1235.94016
[64] T.Bui-Thanh, K.Willcox and O.Ghattas (2008), ‘Model reduction for large-scale systems with high-dimensional parametric input space’, SIAM J. Sci. Comput.30, 3270-3288. · Zbl 1196.37127
[65] L.Bungert, D. A.Coomes, M. J.Ehrhardt, J.Rasch, R.Reisenhofer and C.-B.Schönlieb (2018), ‘Blind image fusion for hyperspectral imaging with the directional total variation’, Inverse Problems34, 044003. · Zbl 1481.94009
[66] M.Burger (2016), Bregman distances in inverse problems and partial differential equations. In Advances in Mathematical Modeling, Optimization and Optimal Control (J.-B.Hiriart-Urruty, eds), Springer, pp. 3-33. · Zbl 1534.65083
[67] M.Burger and S.Osher (2004), ‘Convergence rates of convex variational regularization’, Inverse Problems20, 1411. · Zbl 1068.65085
[68] M.Burger and S.Osher (2013), A guide to the TV zoo. In Level Set and PDE Based Reconstruction Methods in Imaging (M.Burger, eds), Springer, pp. 1-70. · Zbl 1342.94014
[69] M.Burger, L.Eckardt, G.Gilboa and M.Moeller (2015a), Spectral representations of one-homogeneous functionals. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (J.-F.Aujol, eds), Springer, pp. 16-27. · Zbl 1361.35123
[70] M.Burger, J.Flemming and B.Hofmann (2013a), ‘Convergence rates in <![CDATA \([\ell^1]]\)>-regularization if the sparsity assumption fails’, Inverse Problems29, 025013. · Zbl 1262.49010
[71] M.Burger, K.Frick, S.Osher and O.Scherzer (2007a), ‘Inverse total variation flow’, Multiscale Model. Simul.6, 366-395. · Zbl 1147.49026
[72] M.Burger, G.Gilboa, M.Moeller, L.Eckardt and D.Cremers (2016a), ‘Spectral decompositions using one-homogeneous functionals’, SIAM J. Imaging Sci.9, 1374-1408. · Zbl 1361.35123
[73] M.Burger, G.Gilboa, S.Osher and J.Xu (2006), ‘Nonlinear inverse scale space methods’, Commun. Math. Sci.4, 179-212. · Zbl 1106.68117
[74] M.Burger, T.Helin and H.Kekkonen (2016b), Large noise in variational regularization. arXiv:1602.00520 · Zbl 1404.49025
[75] M.Burger, J.Modersitzki and L.Ruthotto (2013b), ‘A hyperelastic regularization energy for image registration’, SIAM J. Sci. Comput.35, B132-B148. · Zbl 1318.92028
[76] M.Burger, M.Moeller, M.Benning and S.Osher (2013c), ‘An adaptive inverse scale space method for compressed sensing’, 82, 269-299. · Zbl 1260.49053
[77] M.Burger, J.Müller, E.Papoutsellis and C.-B.Schönlieb (2014), ‘Total variation regularization in measurement and image space for PET reconstruction’, Inverse Problems30, 105003. · Zbl 1308.65214
[78] M.Burger, S.Osher, J.Xu and G.Gilboa (2005), Nonlinear inverse scale space methods for image restoration. In VLSM 2005: Variational, Geometric, and Level Set Methods in Computer Vision (N.Paragios, eds), Springer, pp. 25-36. · Zbl 1159.68585
[79] M.Burger, K.Papafitsoros, E.Papoutsellis and C.-B.Schönlieb (2015b), System Modeling and Optimization, (L.Bociu, eds), Springer, pp. 169-179.
[80] M.Burger, K.Papafitsoros, E.Papoutsellis and C.-B.Schönlieb (2016c), ‘Infimal convolution regularisation functionals of BV and <![CDATA \([L^p]]\)> spaces, I: The finite <![CDATA \([p]]\)> case’, J. Math. Imaging Vision55, 343-369. · Zbl 1342.49014
[81] M.Burger, E.Resmerita and L.He (2007b), ‘Error estimation for Bregman iterations and inverse scale space methods in image restoration’, Computing81, 109-135. · Zbl 1147.68790
[82] J.-F.Cai and S.Osher (2013), ‘Fast singular value thresholding without singular value decomposition’, Methods Appl. Anal.20, 335-352. · Zbl 1401.65042
[83] J.-F.Cai, E. J.Candès and Z.Shen (2010), ‘A singular value thresholding algorithm for matrix completion’, SIAM J. Optim.20, 1956-1982. · Zbl 1201.90155
[84] J.-F.Cai, S.Osher and Z.Shen (2009a), ‘Convergence of the linearized Bregman iteration for <![CDATA \([\ell_1]]\)>-norm minimization’, Math. Comp.78, 2127-2136. · Zbl 1198.65103
[85] J.-F.Cai, S.Osher and Z.Shen (2009b), ‘Linearized Bregman iterations for compressed sensing’, Math. Comp.78, 1515-1536. · Zbl 1198.65102
[86] F.Cakoni and D.Colton (2005), ‘Open problems in the qualitative approach to inverse electromagnetic scattering theory’, European J. Appl. Math.16, 411-425. · Zbl 1088.78003
[87] L.Calatroni, J. C.De los Reyes and C.-B.Schönlieb (2013), Dynamic sampling schemes for optimal noise learning under multiple nonsmooth constraints. In System Modeling and Optimization (C.Pötzsche, eds), Springer, pp. 85-95. · Zbl 1333.94008
[88] L.Calatroni, J. C.De los Reyes and C.-B.Schönlieb (2017), ‘Infimal convolution of data discrepancies for mixed noise removal’, SIAM J. Imaging Sci.10, 1196-1233. · Zbl 1412.94005
[89] P. T.Callaghan (1993), Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press.
[90] P. T.Callaghan (1999), ‘Rheo-NMR: Nuclear magnetic resonance and the rheology of complex fluids’, Rep. Progr. Phys.62, 599.
[91] P.Campisi and K.Egiazarian (2016), Blind Image Deconvolution: Theory and Applications, CRC press.
[92] E. J.Candès and D. L.Donoho (2000a), Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Technical report, Department of Statistics, Stanford University.
[93] E. J.Candès and D. L.Donoho (2000b), Curvelets, multiresolution representation, and scaling laws. In SPIE Wavelet Applications in Signal and Image Processing VIII, pp. 1-12.
[94] E. J.Candès and D. L.Donoho (2002), ‘Recovering edges in ill-posed inverse problems: Optimality of curvelet frames’, Ann. Statist.30, 784-842. · Zbl 1101.62335
[95] E. J.Candès and C.Fernandez-Granda (2013), ‘Super-resolution from noisy data’, J. Fourier Anal. Appl.19, 1229-1254. · Zbl 1312.94015
[96] E. J.Candès and C.Fernandez-Granda (2014), ‘Towards a mathematical theory of super-resolution’, Commun. Pure Appl. Math.67, 906-956. · Zbl 1350.94011
[97] E. J.Candès and B.Recht (2009), ‘Exact matrix completion via convex optimization’, Found. Comput. Math.9, 717. · Zbl 1219.90124
[98] E. J.Candès and J.Romberg (2007), ‘Sparsity and incoherence in compressive sampling’, Inverse Problems23, 969. · Zbl 1120.94005
[99] E. J.Candès and T.Tao (2004a), ‘Decoding by linear programming’, IEEE Trans. Inform. Theory51, 4203-4215. · Zbl 1264.94121
[100] E. J.Candès and T.Tao (2004b), ‘Near-optimal signal recovery from random projections: Universal encoding strategies’, IEEE Trans. Inform. Theory52, 5406-5425. · Zbl 1309.94033
[101] E. J.Candès, X.Li, Y.Ma and J.Wright (2011), ‘Robust principal component analysis?’, J. Assoc. Comput. Mach.58, 11. · Zbl 1327.62369
[102] E. J.Candès, J.Romberg and T.Tao (2006), ‘Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inform. Theory52, 489-509. · Zbl 1231.94017
[103] V.Caselles, A.Chambolle and M.Novaga (2007), ‘The discontinuity set of solutions of the TV denoising problem and some extensions’, Multiscale Model. Simul.6, 879-894. · Zbl 1145.49024
[104] I.Castillo and R.Nickl (2014), ‘On the Bernstein – von Mises phenomenon for nonparametric Bayes procedures’, Ann. Statist.42, 1941-1969. · Zbl 1305.62190
[105] L.Cavalier (2008), ‘Nonparametric statistical inverse problems’, Inverse Problems24, 034004. · Zbl 1137.62323
[106] Y.Censor and S. A.Zenios (1992), ‘Proximal minimization algorithm withd-functions’, J. Optim. Theory Appl.73, 451-464. · Zbl 0794.90058
[107] K.Chadan, D.Colton, L.Päivärinta and W.Rundell (1997), An Introduction to Inverse Scattering and Inverse Spectral Problems, SIAM. · Zbl 0870.35121
[108] A.Chambolle (2004), ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vision20, 89-97. · Zbl 1366.94048
[109] A.Chambolle and P.-L.Lions (1997), ‘Image recovery via total variation minimization and related problems’, Numer. Math.76, 167-188. · Zbl 0874.68299
[110] A.Chambolle and T.Pock (2011), ‘A first-order primal – dual algorithm for convex problems with applications to imaging’, J. Math. Imaging Vision40, 120-145. · Zbl 1255.68217
[111] A.Chambolle and T.Pock (2016), An introduction to continuous optimization for imaging. In Acta Numerica, Vol. 25, Cambridge University Press, pp. 161-319. · Zbl 1343.65064
[112] A.Chambolle, V.Caselles, D.Cremers, M.Novaga and T.Pock (2010), An introduction to total variation for image analysis. In Theoretical Foundations and Numerical Methods for Sparse Recovery, (M.Fornasier, ed.), Vol. 9 of Radon Series on Computational and Applied Mathematics, De Gruyter, pp. 263-340. · Zbl 1209.94004
[113] T. F.Chan and J.Shen (2005), Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM. · Zbl 1095.68127
[114] T. F.Chan, S.Esedoglu and F.Park (2010), A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In ICIP 2010: 17th IEEE International Conference on Image Processing, pp. 4137-4140.
[115] T. F.Chan, G. H.Golub and P.Mulet (1999), ‘A nonlinear primal – dual method for total variation-based image restoration’, SIAM J. Sci. Comput.20, 1964-1977. · Zbl 0929.68118
[116] C.Chaux, P. L.Combettes, J.-C.Pesquet and V. R.Wajs (2007), ‘A variational formulation for frame-based inverse problems’, Inverse Problems23, 1495. · Zbl 1141.65366
[117] G.Chavent and K.Kunisch (1997), ‘Regularization of linear least squares problems by total bounded variation’, ESAIM Control Optim. Calc. Var.2, 359-376. · Zbl 0890.49010
[118] Y.Chen and T.Pock (2017), ‘Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration’, IEEE Trans. Pattern Anal. Machine Intell.39, 1256-1272.
[119] Y.Chen, T.Pock and H.Bischof (2014a), Learning <![CDATA \([\ell^1]]\)>-based analysis and synthesis sparsity priors using bi-level optimization. arXiv:1401.4105
[120] Y.Chen, T.Pock, R.Ranftl and H.Bischof (2013), Revisiting loss-specific training of filter-based MRFs for image restoration. In GCPR 2013: German Conference on Pattern Recognition, (J.Weickert, eds), Vol. 8142 of Lecture Notes in Computer Science, Springer, pp. 271-281.
[121] Y.Chen, R.Ranftl and T.Pock (2014b), ‘Insights into analysis operator learning: From patch-based sparse models to higher order MRFs’, IEEE Trans. Image Process.23, 1060-1072. · Zbl 1374.94065
[122] Y.Chen, W.Yu and T.Pock (2015), On learning optimized reaction diffusion processes for effective image restoration. In CVPR 2015: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5261-5269.
[123] O.Christensen (2003), An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Springer. · Zbl 1017.42022
[124] C. V.Chung, J. C.De los Reyes and C.-B.Schönlieb (2017), ‘Learning optimal spatially-dependent regularization parameters in total variation image denoising’, Inverse Problems33, 074005. · Zbl 1371.49018
[125] J.Chung, M.Chung and D. P.O’Leary (2011), ‘Designing optimal spectral filters for inverse problems’, SIAM J. Sci. Comput.33, 3132-3152. · Zbl 1269.65040
[126] J.Chung, M. I.Espanol and T.Nguyen (2014), Optimal regularization parameters for general-form Tikhonov regularization. arXiv:1407.1911
[127] F.Colonna, G.Easley, K.Guo and D.Labate (2010), ‘Radon transform inversion using the shearlet representation’, Appl. Comput. Harmon. Anal.29, 232-250. · Zbl 1196.65206
[128] D.Colton and R.Kress (2012), Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93 of Applied Mathematical Sciences, Springer. · Zbl 1266.35121
[129] D.Colton and P.Monk (1988), ‘The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium’, Quart. J. Mech Appl. Math.41, 97-125. · Zbl 0637.73026
[130] D.Colton, H.Engl, A. K.Louis, J.Mclaughlin and W.Rundell (2012), Surveys on Solution Methods for Inverse Problems, Springer. · Zbl 0963.01010
[131] D.Colton, R. E.Ewing and W.Rundell (1990), Inverse Problems in Partial Differential Equations, SIAM. · Zbl 0695.00017
[132] S. F.Cotter, B. D.Rao, K.Engan and K.Kreutz-Delgado (2005), ‘Sparse solutions to linear inverse problems with multiple measurement vectors’, IEEE Trans. Signal Process.53, 2477-2488. · Zbl 1372.65123
[133] J.Darbon and S.Osher (2007), Fast discrete optimization for sparse approximations and deconvolutions. UCLA CAM Report preprint.
[134] M.Dashti, K. J. H.Law, A. M.Stuart and J.Voss (2013), ‘MAP estimators and their consistency in Bayesian nonparametric inverse problems’, Inverse Problems29, 095017. · Zbl 1281.62089
[135] J. C.De los Reyes and C.-B.Schönlieb (2013), ‘Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization’, Inverse Probl. Imaging7, 1183-1214. · Zbl 1283.49005
[136] J. C.De los Reyes, C.-B.Schönlieb and T.Valkonen (2016), ‘The structure of optimal parameters for image restoration problems’, J. Math. Anal. Appl.434, 464-500. · Zbl 1327.49063
[137] J. C.De los Reyes, C.-B.Schönlieb and T.Valkonen (2017), ‘Bilevel parameter learning for higher-order total variation regularisation models’, J. Math. Imaging Vision57, 1-25. · Zbl 1425.94010
[138] A.Defazio, F.Bach and S.Lacoste-Julien (2014), SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In NIPS 2014: Advances in Neural Information Processing Systems 27 (Z.Ghahramani, eds), Curran Associates, pp. 1-12.
[139] C.-A.Deledalle, N.Papadakis and J.Salmon (2015), On debiasing restoration algorithms: Applications to total-variation and nonlocal-means. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (J.-F.Aujol, eds), Springer, pp. 129-141. · Zbl 1444.94009
[140] C.-A.Deledalle, N.Papadakis, J.Salmon and S.Vaiter (2017), ‘CLEAR: Covariant least-square refitting with applications to image restoration’, SIAM J. Imaging Sci.10, 243-284. · Zbl 1365.49034
[141] Q.Denoyelle, V.Duval and G.Peyré (2017), ‘Support recovery for sparse super-resolution of positive measures’, J. Fourier Anal. Appl.23, 1153-1194. · Zbl 1417.65223
[142] J.Domke (2012), Generic methods for optimization-based modeling. In Fifteenth International Conference on Artificial Intelligence and Statistics, (N. D.Lawrence and M.Girolami, eds), PMLR, pp. 318-326.
[143] D. L.Donoho (1992), ‘Superresolution via sparsity constraints’, SIAM J. Math. Anal.23, 1309-1331. · Zbl 0769.42007
[144] D. L.Donoho (2006), ‘Compressed sensing’, IEEE Trans. Inform. Theory52, 1289-1306. · Zbl 1288.94016
[145] D. L.Donoho and I. M.Johnstone (1995), ‘Adapting to unknown smoothness via wavelet shrinkage’, J. Amer. Statist. Assoc.90(432), 1200-1224. · Zbl 0869.62024
[146] D. L.Donoho, M.Elad and V. N.Temlyakov (2006), ‘Stable recovery of sparse overcomplete representations in the presence of noise’, IEEE Trans. Inform. Theory52, 6-18. · Zbl 1288.94017
[147] M.Droske, M.Rumpf and C.Schaller (2003), Nonrigid morphological image registration & its practical issues. In ICIP 2003: IEEE International Conference on Image Processing, pp. II-699.
[148] D.Drusvyatskiy, A. D.Ioffe and A. S.Lewis (2016), Nonsmooth optimization using Taylor-like models: Error bounds, convergence, and termination criteria. arXiv:1610.03446 · Zbl 1459.65083
[149] M. F.Duarte, S.Sarvotham, M. B.Wakin, D.Baron and R. G.Baraniuk (2005), Joint sparsity models for distributed compressed sensing. In Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Representations, IEEE.
[150] V.Duval and G.Peyré (2017a), ‘Sparse regularization on thin grids, I: The Lasso’, Inverse Problems33, 055008. · Zbl 1373.65039
[151] V.Duval and G.Peyré (2017b), ‘Sparse spikes deconvolution on thin grids, II: The continuous basis pursuit’, Inverse Problems33, 095008. · Zbl 1392.35332
[152] J.Eckstein (1993), ‘Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming’, Math. Oper. Res.18, 202-226. · Zbl 0807.47036
[153] P. P. B.Eggermont (1993), ‘Maximum entropy regularization for Fredholm integral equations of the first kind’, SIAM J. Math. Anal.24, 1557-1576. · Zbl 0791.65099
[154] M. J.Ehrhardt and S. R.Arridge (2014), ‘Vector-valued image processing by parallel level sets’, IEEE Trans. Image Process.23, 9-18. · Zbl 1374.94094
[155] M. J.Ehrhardt and M. M.Betcke (2016), ‘Multicontrast MRI reconstruction with structure-guided total variation’, SIAM J. Imaging Sci.9, 1084-1106. · Zbl 1346.47006
[156] M. J.Ehrhardt, P.Markiewicz, M.Liljeroth, A.Barnes, V.Kolehmainen, J. S.Duncan, L.Pizarro, D.Atkinson, B. F.Hutton and S.Ourselin (2016), ‘PET reconstruction with an anatomical MRI prior using parallel level sets’, IEEE Trans. Medical Imaging35, 2189-2199.
[157] M. J.Ehrhardt, K.Thielemans, L.Pizarro, D.Atkinson, S.Ourselin, B. F.Hutton and S. R.Arridge (2014), ‘Joint reconstruction of PET-MRI by exploiting structural similarity’, Inverse Problems31, 015001. · Zbl 1320.92057
[158] B.Eicke (1992), ‘Iteration methods for convexly constrained ill-posed problems in Hilbert space’, Numer. Funct. Anal. Optim.13, 413-429. · Zbl 0769.65026
[159] I.Ekeland and R.Temam (1999), Convex Analysis and Variational Problems, corrected reprint edition, SIAM. · Zbl 0939.49002
[160] M.Elad, P.Milanfar and R.Rubinstein (2007), ‘Analysis versus synthesis in signal priors’, Inverse Problems23, 947. · Zbl 1138.93055
[161] L.Eldén (1977), ‘Algorithms for the regularization of ill-conditioned least squares problems’, BIT Numer. Math.17, 134-145. · Zbl 0362.65105
[162] H. W.Engl (1987a), ‘Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates’, J. Optim. Theory Appl.52, 209-215. · Zbl 0586.65045
[163] H. W.Engl (1987b), ‘On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems’, J. Approx. Theory49, 55-63. · Zbl 0608.65033
[164] H. W.Engl and H.Gfrerer (1988), ‘A posteriori parameter choice for general regularization methods for solving linear ill-posed problems’, Appl. Numer. Math.4, 395-417. · Zbl 0647.65038
[165] H. W.Engl and G.Landl (1993), ‘Convergence rates for maximum entropy regularization’, SIAM J. Numer. Anal.30, 1509-1536. · Zbl 0790.65110
[166] H. W.Engl and A.Neubauer (1985), Optimal discrepancy principles for the Tikhonov regularization of integral equations of the first kind. In Constructive Methods for the Practical Treatment of Integral Equations (G.Hämmerlin and K.-H.Hoffmann, eds), Springer, pp. 120-141. · Zbl 0562.65086
[167] H. W.Engl and A.Neubauer (1987), Optimal parameter choice for ordinary and iterated Tikhonov regularization. In Inverse and Ill-Posed Problems (H. W.Engl and C. W.Groetsch, eds), Elsevier, pp. 97-125. · Zbl 0627.65060
[168] H. W.Engl, M.Hanke and A.Neubauer (1996), Regularization of Inverse Problems, Mathematics and Its Applications, Springer. · Zbl 0859.65054
[169] H. W.Engl, K.Kunisch and A.Neubauer (1989), ‘Convergence rates for Tikhonov regularisation of non-linear ill-posed problems’, Inverse Problems5, 523. · Zbl 0695.65037
[170] EnglH. W., LouisA. K. & RundellW. (Eds) (2012), Inverse Problems in Medical Imaging and Nondestructive Testing, Springer. · Zbl 0871.00041
[171] E.Esser, X.Zhang and T. F.Chan (2010), ‘A general framework for a class of first order primal – dual algorithms for convex optimization in imaging science’, SIAM J. Imaging Sci.3, 1015-1046. · Zbl 1206.90117
[172] L.Evans and R.Gariepy (1992), Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press. · Zbl 0804.28001
[173] J.Flemming (2013), ‘Variational smoothness assumptions in convergence rate theory: An overview’, J. Inverse Ill-Posed Probl.21, 395-409. · Zbl 1293.47058
[174] J.Flemming (2017a), A converse result for Banach space convergence rates in Tikhonov-type convex regularization of ill-posed linear equations. arXiv:1712.01499 · Zbl 06969202
[175] J.Flemming (2017b), ‘Existence of variational source conditions for nonlinear inverse problems in Banach spaces’, J. Inverse Ill-Posed Probl. doi:10.1515/jiip-2017-0092 · Zbl 06864434
[176] J.Flemming and D.Gerth (2017), ‘Injectivity and weak*-to-weak continuity suffice for convergence rates in <![CDATA \([\ell^1]]\)>-regularization’, J. Inverse Ill-Posed Probl.26, 85-94. · Zbl 1382.65159
[177] J.Flemming and B.Hofmann (2010), ‘A new approach to source conditions in regularization with general residual term’, Numer. Funct. Anal. Optim.31, 254-284. · Zbl 1195.47040
[178] J.Flemming, B.Hofmann and I.Veselić (2015), ‘On <![CDATA \([\ell^1]]\)>-regularization in light of Nashed’s ill-posedness concept’, Comput. Methods Appl. Math.15, 279-289. · Zbl 1319.47006
[179] J.Flemming, B.Hofmann and I.Veselić (2016), ‘A unified approach to convergence rates for <![CDATA \([\ell^1]]\)>-regularization and lacking sparsity’, J. Inverse Ill-Posed Probl.24, 139-148. · Zbl 1336.65104
[180] M.Fornasier and H.Rauhut (2008), ‘Recovery algorithms for vector-valued data with joint sparsity constraints’, SIAM J. Numer. Anal.46, 577-613. · Zbl 1211.65066
[181] Y.Gao and K.Bredies (2017), Infimal convolution of oscillation total generalized variation for the recovery of images with structured texture. arXiv:1710.11591 · Zbl 1419.94004
[182] P. D.Gatehouse, J.Keegan, L. A.Crowe, S.Masood, R. H.Mohiaddin, K.-F.Kreitner and D. N.Firmin (2005), ‘Applications of phase-contrast flow and velocity imaging in cardiovascular MRI’, European Radiology15, 2172-2184.
[183] H.Gfrerer (1987), ‘An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates’, Math. Comp.49(180), 507-522. · Zbl 0631.65056
[184] A.Gholami and H.Siahkoohi (2010), ‘Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints’, Geophys. J. Internat.180, 871-882.
[185] G.Gilboa (2014a), Nonlinear band-pass filtering using the TV transform. In EUSIPCO 2014: 22nd European Signal Processing Conference, IEEE, pp. 1696-1700.
[186] G.Gilboa (2014b), ‘A total variation spectral framework for scale and texture analysis’, SIAM J. Imaging Sci.7, 1937-1961. · Zbl 1361.94014
[187] G.Gilboa, M.Moeller and M.Burger (2016), ‘Nonlinear spectral analysis via one-homogeneous functionals: Overview and future prospects’, J. Math. Imaging Vision56, 300-319. · Zbl 1409.94182
[188] E.Giné and R.Nickl (2015), Mathematical Foundations of Infinite-Dimensional Statistical Models, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press. · Zbl 1358.62014
[189] J. S.Grah (2017) Mathematical imaging tools in cancer research: From mitosis analysis to sparse regularisation. PhD thesis, University of Cambridge.
[190] M.Grasmair (2011), ‘Linear convergence rates for Tikhonov regularization with positively homogeneous functionals’, Inverse Problems27, 075014. · Zbl 1219.35359
[191] M.Grasmair (2013), ‘Variational inequalities and higher order convergence rates for Tikhonov regularisation on Banach spaces’, J. Inverse Ill-Posed Probl.21, 379-394. · Zbl 1288.47016
[192] M.Grasmair and F.Lenzen (2010), ‘Anisotropic total variation filtering’, Appl. Math. Optim.62, 323-339. · Zbl 1205.35152
[193] M.Grasmair, O.Scherzer and M.Haltmeier (2011), ‘Necessary and sufficient conditions for linear convergence of <![CDATA \([\ell^1]]\)>-regularization’, Commun. Pure Appl. Math.64, 161-182. · Zbl 1217.65095
[194] C. W.Groetsch (1977), ‘Sequential regularization of ill-posed problems involving unbounded operators’, Comment. Math. Univ. Carolin.18, 489-498. · Zbl 0404.65028
[195] C. W.Groetsch (1993), Inverse Problems in the Mathematical Sciences, Vieweg Mathematics for Scientists and Engineers, Vieweg. · Zbl 0779.45001
[196] C. W.Groetsch and J. T.King (1979), ‘Extrapolation and the method of regularization for generalized inverses’, J. Approx. Theory25, 233-247. · Zbl 0425.41029
[197] K.Guo and D.Labate (2007), ‘Optimally sparse multidimensional representation using shearlets’, SIAM J. Math. Anal.39, 298-318. · Zbl 1197.42017
[198] E.Haber and L.Tenorio (2003), ‘Learning regularization functionals: A supervised training approach’, Inverse Problems19, 611. · Zbl 1046.90087
[199] E.Haber, L.Horesh and L.Tenorio (2009), ‘Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems’, Inverse Problems26, 025002. · Zbl 1189.65073
[200] J.Hadamard (1902), ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin13, 49-52.
[201] J.Hadamard (1923), Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press. · JFM 49.0725.04
[202] K.Hammernik, T.Klatzer, E.Kobler, M. P.Recht, D. K.Sodickson, T.Pock and F.Knoll (2017), ‘Learning a variational network for reconstruction of accelerated MRI data’, Magn. Reson. Med.79, 3055-3071.
[203] M.Hanke, A.Neubauer and O.Scherzer (1995), ‘A convergence analysis of the Landweber iteration for nonlinear ill-posed problems’, Numer. Math.72, 21-37. · Zbl 0840.65049
[204] P. C.Hansen (1987), ‘The truncated SVD as a method for regularization’, BIT Numer. Math.27, 534-553. · Zbl 0633.65041
[205] P. C.Hansen (1992), ‘Analysis of discrete ill-posed problems by means of the L-curve’, SIAM Review34, 561-580. · Zbl 0770.65026
[206] M.Hein and T.Bühler (2010), An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. In NIPS 2010: Advances in Neural Information Processing Systems 23 (J. D.Lafferty, eds), Curran Associates, pp. 847-855.
[207] P.Heins (2014) Reconstruction using local sparsity: A novel regularization technique and an asymptotic analysis of spatial sparsity priors. PhD thesis, Westfälische Wilhelms-Universität Münster, Germany. · Zbl 1311.65041
[208] P.Heins, M.Moeller and M.Burger (2015), ‘Locally sparse reconstruction using the <![CDATA \([\ell^{1,\infty }]]\)>-norm’, Inverse Probl. Imaging9, 1093-1137. · Zbl 1332.65062
[209] T.Helin and M.Burger (2015), ‘Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems’, Inverse Problems31, 085009. · Zbl 1325.62058
[210] T.Helin and M.Lassas (2011), ‘Hierarchical models in statistical inverse problems and the Mumford-Shah functional’, Inverse Problems27, 015008. · Zbl 1215.65022
[211] W.Hinterberger and O.Scherzer (2006), ‘Variational methods on the space of functions of bounded Hessian for convexification and denoising’, Computing76, 109-133. · Zbl 1098.49022
[212] W.Hinterberger, O.Scherzer, C.Schnörr and J.Weickert (2002), ‘Analysis of optical flow models in the framework of the calculus of variations’, Numer. Funct. Anal. Optim.23, 69-89. · Zbl 1016.49002
[213] M.Hintermüller and T.Wu (2015), ‘Bilevel optimization for calibrating point spread functions in blind deconvolution’, Inverse Probl. Imaging9, 1139-1169. · Zbl 1343.49023
[214] M.Hintermüller, M.Holler and K.Papafitsoros (2017), A function space framework for structural total variation regularization with applications in inverse problems. arXiv:1710.01527 · Zbl 1436.65070
[215] A. E.Hoerl (1959), ‘Optimum solution of many variables equations’, Chem. Engrg Progr.55, 69-78.
[216] A. E.Hoerl and R. W.Kennard (1970), ‘Ridge regression: Biased estimation for nonorthogonal problems’, Technometrics12, 55-67. · Zbl 0202.17205
[217] T.Hohage (1997), ‘Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem’, Inverse Problems13, 1279. · Zbl 0895.35109
[218] T.Hohage and F.Weidling (2017), ‘Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods’, SIAM J. Numer. Anal.55, 598-620. · Zbl 1432.65070
[219] T.Hohage and F.Werner (2013), ‘Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data’, Numer. Math.123, 745-779. · Zbl 1280.65047
[220] T.Hohage and F.Werner (2016), ‘Inverse problems with Poisson data: Statistical regularization theory, applications and algorithms’, Inverse Problems32, 093001. · Zbl 1372.65163
[221] D.Holland, D.Malioutov, A.Blake, A.Sederman and L.Gladden (2010), ‘Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing’, J. Magnetic Resonance203, 236-246.
[222] D.Holland, C.Müller, J.Dennis, L.Gladden and A.Sederman (2008), ‘Spatially resolved measurement of anisotropic granular temperature in gas-fluidized beds’, Powder Technology182, 171-181.
[223] M.Holler and K.Kunisch (2014), ‘On infimal convolution of TV-type functionals and applications to video and image reconstruction’, SIAM J. Imaging Sci.7, 2258-2300. · Zbl 1308.94019
[224] Y.Hu and M.Jacob (2012), ‘Higher degree total variation (HDTV) regularization for image recovery’, IEEE Trans. Image Process.21, 2559-2571. · Zbl 1373.94174
[225] J.Huang and D.Mumford (1999), Statistics of natural images and models. In CVPR 1999: IEEE Computer Society Conference On Computer Vision and Pattern Recognition, pp. 541-547.
[226] V.Isakov (2006), Inverse Problems for Partial Differential Equations, Vol. 127 of Applied Mathematical Sciences, Springer. · Zbl 1092.35001
[227] V.Isakov (2008), ‘On inverse problems in secondary oil recovery’, European J. Appl. Math.19, 459-478. · Zbl 1208.35171
[228] V. K.Ivanov (1962), ‘On linear problems which are not well-posed’, Soviet Math. Dokl.3, 981-983.
[229] K.Jalalzai (2016), ‘Some remarks on the staircasing phenomenon in total variation-based image denoising’, J. Math. Imaging Vision54, 256-268. · Zbl 1338.94008
[230] F.John (1960), ‘Continuous dependence on data for solutions of partial differential equations with a prescribed bound’, Commun. Pure Appl. Math.13, 551-585. · Zbl 0097.08101
[231] R.Johnson and T.Zhang (2013), Accelerating stochastic gradient descent using predictive variance reduction. In NIPS 2013: Advances in Neural Information Processing Systems 26 (C. J. C.Burges, eds), Curran Associates, pp. 315-323.
[232] J. P.Kaipio and E.Somersalo (2006), Statistical and Computational Inverse Problems, Applied Mathematical Sciences, Springer. · Zbl 1068.65022
[233] J. P.Kaipio, V.Kolehmainen, M.Vauhkonen and E.Somersalo (1999), ‘Inverse problems with structural prior information’, Inverse Problems15, 713. · Zbl 0949.65144
[234] B.Kaltenbacher (1997), ‘Some Newton-type methods for the regularization of nonlinear ill-posed problems’, Inverse Problems13, 729. · Zbl 0880.65033
[235] B.Kaltenbacher (2008), ‘A note on logarithmic convergence rates for nonlinear Tikhonov regularization’, J. Inverse Ill-Posed Probl.16, 79-88. · Zbl 1154.65042
[236] B.Kaltenbacher, F.Schöpfer and T.Schuster (2009), ‘Iterative methods for nonlinear ill-posed problems in Banach spaces: Convergence and applications to parameter identification problems’, Inverse Problems25, 065003. · Zbl 1176.65070
[237] H.Kekkonen, M.Lassas and S.Siltanen (2014), ‘Analysis of regularized inversion of data corrupted by white Gaussian noise’, Inverse Problems30, 045009. · Zbl 1287.35101
[238] H.Kekkonen, M.Lassas and S.Siltanen (2016), ‘Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators’, Inverse Problems32, 085005. · Zbl 1390.35422
[239] C.Kirisits and O.Scherzer (2017), ‘Convergence rates for regularization functionals with polyconvex integrands’, Inverse Problems33, 085008. · Zbl 1376.49047
[240] K. C.Kiwiel (1997), ‘Proximal minimization methods with generalized Bregman functions’, SIAM J. Control Optim.35, 1142-1168. · Zbl 0890.65061
[241] E.Klann and R.Ramlau (2013), ‘Regularization properties of Mumford-Shah-type functionals with perimeter and norm constraints for linear ill-posed problems’, SIAM J. Imaging Sci.6, 413-436. · Zbl 1282.35404
[242] E.Klann, R.Ramlau and W.Ring (2011), ‘A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data’, Inverse Probl. Imaging5, 137-166. · Zbl 1213.94015
[243] T.Klatzer, D.Soukup, E.Kobler, K.Hammernik and T.Pock (2017), Trainable regularization for multi-frame superresolution. In GCPR 2017: German Conference on Pattern Recognition, (V.Roth and T.Vetter, eds), Vol. 10496 of Lecture Notes in Computer Science, Springer, pp. 90-100.
[244] F.Knoll, K.Bredies, T.Pock and R.Stollberger (2011), ‘Second order total generalized variation (TGV) for MRI’, Magnetic Resonance Medicine65, 480-491.
[245] F.Knoll, M.Holler, T.Koesters, R.Otazo, K.Bredies and D. K.Sodickson (2017), ‘Joint MR-PET reconstruction using a multi-channel image regularizer’, IEEE Trans. Medical Imaging36, 1-16.
[246] E.Kobler, T.Klatzer, K.Hammernik and T.Pock (2017), Variational networks: connecting variational methods and deep learning. In GCPR 2017: German Conference on Pattern Recognition, (V.Roth and T.Vetter, eds), Vol. 10496 of Lecture Notes in Computer Science, Springer, pp. 281-293.
[247] V.Kolehmainen, M.Lassas, K.Niinimäki and S.Siltanen (2012), ‘Sparsity-promoting Bayesian inversion’, Inverse Problems28, 025005. · Zbl 1233.62046
[248] M.Krause, R. M.Alles, B.Burgeth and J.Weickert (2016), ‘Fast retinal vessel analysis’, J. Real-Time Image Processing11, 413-422.
[249] C.Kravaris and J. H.Seinfeld (1985), ‘Identification of parameters in distributed parameter systems by regularization’, SIAM J. Control Optim.23, 217-241. · Zbl 0563.93018
[250] A.Kryanev (1974), ‘An iterative method for solving incorrectly posed problems’, USSR Comput. Math. Math. Phys.14, 24-35. · Zbl 0299.65053
[251] D.Kundur and D.Hatzinakos (1996), ‘Blind image deconvolution’, IEEE Signal Processing Magazine13, 43.
[252] K.Kunisch and M.Hintermüller (2004), ‘Total bounded variation regularization as a bilaterally constrained optimization problem’, SIAM J. Appl. Math.64, 1311-1333. · Zbl 1055.94504
[253] K.Kunisch and T.Pock (2013), ‘A bilevel optimization approach for parameter learning in variational models’, SIAM J. Imaging Sci.6, 938-983. · Zbl 1280.49053
[254] K.Kurdyka (1998), ‘On gradients of functions definable in o-minimal structures’, Annales de l’Institut Fourier (Chartres)48, 769-784. · Zbl 0934.32009
[255] G.Kutyniok and D.Labate (2012), Introduction to shearlets. In Shearlets: Multiscale Analysis for Multivariate Data, Applied and Numerical Harmonic Analysis, Springer, pp. 1-38. · Zbl 1251.42010
[256] D.Labate, W.-Q.Lim, G.Kutyniok and G.Weiss (2005), Sparse multidimensional representation using shearlets. In Optics and Photonics 2005, Proceedings Vol. 5914, SPIE, 59140U.
[257] L.Landweber (1951), ‘An iteration formula for Fredholm integral equations of the first kind’, Amer. J. Math.73, 615-624. · Zbl 0043.10602
[258] M.Lassas, E.Saksman and S.Siltanen (2009), ‘Discretization-invariant Bayesian inversion and Besov space priors’, Inverse Probl. Imaging3, 87-122. · Zbl 1191.62046
[259] R.Lattès and J.-L.Lions (1967), ‘Méthode de quasi-réversibilité et applications’. · Zbl 0159.20803
[260] T.Laurent, J.von Brecht, X.Bresson and A.Szlam (2016), The product cut. In NIPS 2016: Advances in Neural Information Processing Systems 29 (D. D.Lee, eds), Curran Associates, pp. 3792-3800.
[261] Y.LeCun, Y.Bengio and G.Hinton (2015), ‘Deep learning’, Nature521(7553), 436-444.
[262] J.Lederer (2013), Trust, but verify: Benefits and pitfalls of least-squares refitting in high dimensions. arXiv:1306.0113
[263] O.Lee, J. M.Kim, Y.Bresler and J. C.Ye (2011), ‘Compressive diffuse optical tomography: Noniterative exact reconstruction using joint sparsity’, IEEE Trans. Medical Imaging30, 1129-1142.
[264] F.Lenzen, F.Becker and J.Lellmann (2013), Adaptive second-order total variation: An approach aware of slope discontinuities. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (J.-F.Aujol, eds), Springer, pp. 61-73.
[265] K.Levenberg (1944), ‘A method for the solution of certain non-linear problems in least squares’, Quart. Appl. Math.2, 164-168. · Zbl 0063.03501
[266] G.Li and T. K.Pong (2015), ‘Global convergence of splitting methods for nonconvex composite optimization’, SIAM J. Optim.25, 2434-2460. · Zbl 1330.90087
[267] H. C.Lie and T.Sullivan (2017), Equivalence of weak and strong modes of measures on topological vector spaces. arXiv:1708.02516 · Zbl 1415.65133
[268] P.-L.Lions and B.Mercier (1979), ‘Splitting algorithms for the sum of two nonlinear operators’, SIAM J. Numer. Anal.16, 964-979. · Zbl 0426.65050
[269] S.Lojasiewicz (1963), ‘Une propriété topologique des sous-ensembles analytiques réels’, Les Équations aux Dérivées Partielles117, 87-89. · Zbl 0234.57007
[270] A.Louis (1996), ‘Approximate inverse for linear and some nonlinear problems’, Inverse Problems12, 175. · Zbl 0851.65036
[271] M.Lustig, D.Donoho and J. M.Pauly (2007), ‘Sparse MRI: The application of compressed sensing for rapid MR imaging’, Magnetic Resonance Medicine58, 1182-1195.
[272] S.Mallat (2008), A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press. · Zbl 1170.94003
[273] S.Mallat and Z.Zhang (1993), ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process.12, 3397-3415. · Zbl 0842.94004
[274] D. W.Marquardt (1963), ‘An algorithm for least-squares estimation of nonlinear parameters’, J. Soc. Indust. Appl. Math.11, 431-441. · Zbl 0112.10505
[275] A.Marquina and S. J.Osher (2008), ‘Image super-resolution by TV-regularization and Bregman iteration’, J. Sci. Comput.37, 367-382. · Zbl 1203.94014
[276] J.Modersitzki (2004), Numerical Methods for Image Registration, Numerical Mathematics and Scientific Computation, Oxford University Press. · Zbl 1055.68140
[277] M.Moeller (2012), Multiscale methods for polyhedral regularizations and applications in high dimensional imaging. PhD thesis, University of Münster, Germany. · Zbl 1259.94004
[278] M.Moeller and M.Burger (2013), ‘Multiscale methods for polyhedral regularizations’, SIAM J. Optim.23, 1424-1456. · Zbl 1281.65091
[279] M.Moeller, M.Benning, C.Schönlieb and D.Cremers (2015), ‘Variational depth from focus reconstruction’, IEEE Trans. Image Process.24, 5369-5378. · Zbl 1408.94486
[280] M.Moeller, E.Brinkmann, M.Burger and T.Seybold (2014), ‘Color Bregman TV’, SIAM J. Imaging Sci.7, 2771-2806. · Zbl 1361.94017
[281] M.Moeller, T.Wittman, A.Bertozzi and M.Burger (2012), ‘A variational approach for sharpening high dimensional images’, SIAM J. Imaging Sci.5, 150-178. · Zbl 1258.94018
[282] V. A.Morozov (1966), ‘Regularization of incorrectly posed problems and the choice of regularization parameter’, USSR Comput. Math. Math. Phys.6, 242-251. · Zbl 0176.13103
[283] J.Müller (2013), Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in PET. PhD thesis, Westfälische Wilhelms-Universität Münster, Germany. · Zbl 1271.94001
[284] J.Müller, C.Brune, A.Sawatzky, T.Kösters, K. P.Schäfers and M.Burger (2011), Reconstruction of short time PET scans using Bregman iterations. In NSS/MIC 2011: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 2383-2385.
[285] D.Mumford and J.Shah (1989), ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math.42, 577-685. · Zbl 0691.49036
[286] V.Nair and G. E.Hinton (2010), Rectified linear units improve restricted Boltzmann machines. In ICML’10: 27th International Conference on Machine Learning, pp. 807-814.
[287] M. Z.Nashed and G.Wahba (1974a), ‘Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind’, Math. Comp.28(125), 69-80. · Zbl 0273.45012
[288] M. Z.Nashed and G.Wahba (1974b), ‘Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations’, SIAM J. Math. Anal.5, 974-987. · Zbl 0287.47009
[289] M. Z.Nashed and G.Wahba (1974c), ‘Regularization and approximation of linear operator equations in reproducing kernel spaces’, Bull. Amer. Math. Soc.80, 1213-1218. · Zbl 0309.47012
[290] F.Natterer (1984), ‘Error bounds for Tikhonov regularization in Hilbert scales’, Appl. Anal.18, 29-37. · Zbl 0504.65031
[291] F.Natterer (2001), The Mathematics of Computerized Tomography, SIAM Monographs on Mathematical Modeling and Computation, SIAM. · Zbl 0973.92020
[292] F.Natterer and F.Wübbeling (2001), Mathematical Methods in Image Reconstruction, SIAM. · Zbl 0974.92016
[293] A.Nemirovskii and D. B.Yudin (1983), Problem Complexity and Method Efficiency in Optimization, Wiley-Interscience Series in Discrete Mathematics, Wiley. · Zbl 0501.90062
[294] A.Neubauer (1988a), ‘An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates’, SIAM J. Numer. Anal.25, 1313-1326. · Zbl 0675.65049
[295] A.Neubauer (1988b), ‘Tikhonov-regularization of ill-posed linear operator equations on closed convex sets’, J. Approx. Theory53, 304-320. · Zbl 0676.41028
[296] A.Neubauer and H. K.Pikkarainen (2008), ‘Convergence results for the Bayesian inversion theory’, J. Inverse Ill-Posed Probl.16, 601-613. · Zbl 1284.60012
[297] R.Nickl and J.Söhl (2017), ‘Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions’, Ann. Statist.45, 1664-1693. · Zbl 1411.62087
[298] M.Nikolova and P.Tan (2017), Alternating proximal gradient descent for nonconvex regularised problems with multiconvex coupling terms. arXiv:hal-01492846v2
[299] P.Ochs, Y.Chen, T.Brox and T.Pock (2014), ‘iPiano: Inertial proximal algorithm for nonconvex optimization’, SIAM J. Imaging Sci.7, 1388-1419. · Zbl 1296.90094
[300] P.Ochs, J.Fadili and T.Brox (2017) Non-smooth non-convex Bregman minimization: Unification and new algorithms. arXiv:1707.02278 · Zbl 1416.49015
[301] P.Ochs, R.Ranftl, T.Brox and T.Pock (2015), Bilevel optimization with nonsmooth lower level problems. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (J.-F.Aujol, eds), Springer, pp. 654-665. · Zbl 1352.65155
[302] S.Osher, M.Burger, D.Goldfarb, J.Xu and W.Yin (2005), ‘An iterative regularization method for total variation-based image restoration’, Multiscale Model. Simul.4, 460-489. · Zbl 1090.94003
[303] R.Otazo, E.Candès and D. K.Sodickson (2015), ‘Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components’, Magnetic Resonance Medicine73, 1125-1136.
[304] K.Papafitsoros and C.-B.Schönlieb (2014), ‘A combined first and second order variational approach for image reconstruction’, J. Math. Imaging Vision48, 308-338. · Zbl 1362.94009
[305] N.Parikh and S.Boyd (2014), ‘Proximal algorithms’, Found. Trends Optim.1, 127-239.
[306] L. E.Payne (1975), Improperly Posed Problems in Partial Differential Equations, Vol. 22 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM. · Zbl 0302.35003
[307] D. L.Phillips (1962), ‘A technique for the numerical solution of certain integral equations of the first kind’, J. Assoc. Comput. Mach.9, 84-97. · Zbl 0108.29902
[308] T.Pock and S.Sabach (2016), ‘Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems’, SIAM J. Imaging Sci.9, 1756-1787. · Zbl 1358.90109
[309] T.Pock, D.Cremers, H.Bischof and A.Chambolle (2009), An algorithm for minimizing the Mumford-Shah functional. In ICCV 2009: IEEE 12th International Conference on Computer Vision, pp. 1133-1140.
[310] M.Prato, S.Bonettini, I.Loris, F.Porta and S.Rebegoldi (2016), ‘On the constrained minimization of smooth Kurdyka-Łojasiewicz functions with the scaled gradient projection method’, J. Phys. Conf. Ser.756, 012001. · Zbl 1373.65040
[311] R.Ranftl, T.Pock and H.Bischof (2013), Minimizing TGV-based variational models with non-convex data terms. In SSVM 2013: Scale Space and Variational Methods in Computer Vision (A.Kuijper, eds), Springer, pp. 282-293. · Zbl 1362.68014
[312] J.Rasch, E.-M.Brinkmann and M.Burger (2018), ‘Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging’, Inverse Problems34, 014001. · Zbl 1381.92057
[313] J.Rasch, V.Kolehmainen, R.Nivajärvi, M.Kettunen, O.Gröhn, M.Burger and E.-M.Brinkmann (2017), Dynamic MRI reconstruction from undersampled data with an anatomical prescan. arXiv:1712.00099 · Zbl 1397.78038
[314] T.Raus (1984), ‘Residue principle for ill-posed problems’, Acta et Comment. Univ. Tartuensis672, 16-26. · Zbl 0578.65050
[315] T.Raus (1992), ‘About regularization parameter choice in case of approximately given error bounds of data’, Acta et Comment. Univ. Tartuensis937, 77-89. · Zbl 0808.65061
[316] A. J.Reader, J.Matthews, F. C.Sureau, C.Comtat, R.Trébossen and I.Buvat (2007), Fully 4D image reconstruction by estimation of an input function and spectral coefficients. In IEEE Nuclear Science Symposium Conference, pp. 3260-3267.
[317] B.Recht, M.Fazel and P. A.Parrilo (2010), ‘Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization’, SIAM Review52, 471-501. · Zbl 1198.90321
[318] M.Reed and B.Simon (1978), Methods of Mathematical Physics IV: Analysis of Operators, Elsevier. · Zbl 0401.47001
[319] E.Resmerita (2005), ‘Regularization of ill-posed problems in Banach spaces: Convergence rates’, Inverse Problems21, 1303. · Zbl 1082.65055
[320] E.Resmerita and O.Scherzer (2006), ‘Error estimates for non-quadratic regularization and the relation to enhancement’, Inverse Problems22, 801. · Zbl 1103.65062
[321] W.Ring (2000), ‘Structural properties of solutions to total variation regularization problems’, ESAIM Math. Model. Numer. Anal.34, 799-810. · Zbl 1018.49021
[322] R.Rockafellar (1972), Convex Analysis, Princeton Mathematical Series, Princeton University Press. · Zbl 0224.49003
[323] Y.Romano, M.Elad and P.Milanfar (2017), ‘The little engine that could: Regularization by denoising (RED)’, SIAM J. Imaging Sci.10, 1804-1844. · Zbl 1401.62101
[324] L.Rondi (2008), ‘Reconstruction in the inverse crack problem by variational methods’, European J. Appl. Math.19, 635-660. · Zbl 1148.74026
[325] S.Roth and M. J.Black (2005), Fields of experts: A framework for learning image priors. In CVPR 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 860-867.
[326] L.Rudin, P.-L.Lions and S.Osher (2003), Multiplicative denoising and deblurring: Theory and algorithms. In Geometric Level Set Methods in Imaging, Vision, and Graphics (S.Osher and N.Paragios, eds), Springer, pp. 103-119.
[327] L.Rudin, S.Osher and E.Fatemi (1992), ‘Nonlinear total variation based noise removal algorithms’, Phys. D: Nonlinear Phenomena60, 259-268. · Zbl 0780.49028
[328] W.Rudin (2006), Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill.
[329] A.Sawatzky, C.Brune, T.Kösters, F.Wübbeling and M.Burger (2013), EM-TV methods for inverse problems with Poisson noise. In Level Set and PDE Based Reconstruction Methods in Imaging, (M.Burger and S.Osher, eds), Vol 2090 of Lecture Notes in Mathematics, Springer, pp. 71-142. · Zbl 1342.94026
[330] O.Scherzer (1993), ‘Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems’, Numer. Math.66, 259-279. · Zbl 0791.65040
[331] O.Scherzer (1998), ‘Denoising with higher order derivatives of bounded variation and an application to parameter estimation’, Computing60, 1-27. · Zbl 0891.65103
[332] M. F.Schmidt, M.Benning and C.-B.Schönlieb (2018), ‘Inverse scale space decomposition’, Inverse Problems34, 045008. · Zbl 1468.62352
[333] U.Schmidt and S.Roth (2014), Shrinkage fields for effective image restoration. In CVPR 2014: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774-2781.
[334] E.Schock (1985), Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence. In Constructive Methods for the Practical Treatment of Integral Equations, (G.Hämmerlin and K. H.Hoffmann, eds), Vol. 73 of International Series of Numerical Mathematics, Springer, pp. 234-243. · Zbl 0571.65039
[335] F.Schöpfer, A. K.Louis and T.Schuster (2006), ‘Nonlinear iterative methods for linear ill-posed problems in Banach spaces’, Inverse Problems22, 311. · Zbl 1088.65052
[336] T.Schuster, B.Kaltenbacher, B.Hofmann and K.Kazimierski (2012), Regularization Methods in Banach Spaces, De Gruyter. · Zbl 1259.65087
[337] A.Sederman, M.Johns, P.Alexander and L.Gladden (1998), ‘Structure-flow correlations in packed beds’, Chem. Engrg Sci.53, 2117-2128.
[338] T. I.Seidman and C. R.Vogel (1989), ‘Well posedness and convergence of some regularisation methods for non-linear ill posed problems’, Inverse Problems5, 227. · Zbl 0691.35090
[339] S.Setzer, G.Steidl and T.Teuber (2011), ‘Infimal convolution regularizations with discrete <![CDATA \([\ell_1]]\)>-type functionals’, Comm. Math. Sci9, 797-872. · Zbl 1269.49063
[340] J.-L.Starck, F.Murtagh and J. M.Fadili (2010), Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, Cambridge University Press. · Zbl 1196.94008
[341] D.Strong and T.Chan (2003), ‘Edge-preserving and scale-dependent properties of total variation regularization’, Inverse Problems19, S165. · Zbl 1043.94512
[342] D.Strong and T.Chan (1996), Exact solutions to total variation regularization problems. CAM Report 96-41, UCLA.
[343] A. M.Stuart (2010), Inverse problems: A Bayesian perspective. In Acta Numerica, Vol. 19, Cambridge University Press, pp. 451-559. · Zbl 1242.65142
[344] R.Stück, M.Burger and T.Hohage (2011), ‘The iteratively regularized Gauss-Newton method with convex constraints and applications in 4Pi microscopy’, Inverse Problems28, 015012. · Zbl 1241.65054
[345] M. F.Tappen (2007), Utilizing variational optimization to learn Markov random fields. In CVPR 2007: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8.
[346] A.Tarantola (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM. · Zbl 1074.65013
[347] A.Tarantola and B.Valette (1982), ‘Inverse problems = quest for information’, J. Geophys.50, 150-170.
[348] A. B.Tayler, D. J.Holland, A. J.Sederman and L. F.Gladden (2012), ‘Exploring the origins of turbulence in multiphase flow using compressed sensing MRI’, Phys. Rev. Lett.108, 264505.
[349] M.Teboulle (1992), ‘Entropic proximal mappings with applications to nonlinear programming’, Math. Oper. Res.17, 670-690. · Zbl 0766.90071
[350] G.Teschke and R.Ramlau (2007), ‘An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting’, Inverse Problems23, 1851. · Zbl 1131.47055
[351] J.Thomas King and D.Chillingworth (1979), ‘Approximation of generalized inverses by iterated regularization’, Numer. Funct. Anal. Optim.1, 499-513. · Zbl 0446.65026
[352] A. M.Thompson, J. C.Brown, J. W.Kay and D. M.Titterington (1991), ‘A study of methods of choosing the smoothing parameter in image restoration by regularization’, IEEE Trans. Pattern Anal. Machine Intell.13, 326-339.
[353] A. N.Tikhonov (1943), ‘On the stability of inverse problems’, Dokl. Akad. Nauk SSSR39, 195-198.
[354] A. N.Tikhonov (1963), ‘Solution of incorrectly formulated problems and the regularization method’, Soviet Meth. Dokl.4, 1035-1038. · Zbl 0141.11001
[355] A. N.Tikhonov (1966), ‘On the stability of the functional optimization problem’, USSR Comput. Math. Math. Phys.6, 28-33. · Zbl 0212.23803
[356] A. N.Tikhonov and V. Y.Arsenin (1977), Solutions of Ill-Posed Problems, Winston & Sons. · Zbl 0354.65028
[357] A. N.Tikhonov, A.Goncharsky and M.Bloch (1987), Ill-Posed Problems in the Natural Sciences, Mir.
[358] S.Vaiter, C.-A.Deledalle, G.Peyré, C.Dossal and J.Fadili (2013a), ‘Local behavior of sparse analysis regularization: Applications to risk estimation’, Appl. Comput. Harmon. Anal.35, 433-451. · Zbl 1291.65189
[359] S.Vaiter, G.Peyré, C.Dossal and J.Fadili (2013b), ‘Robust sparse analysis regularization’, IEEE Trans. Inform. Theory59, 2001-2016. · Zbl 1364.94172
[360] T.Valkonen (2014), ‘A primal – dual hybrid gradient method for nonlinear operators with applications to MRI’, Inverse Problems30, 055012. · Zbl 1310.47081
[361] C.Vogel (2002), Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, SIAM. · Zbl 1008.65103
[362] G.Wahba (1977), ‘Practical approximate solutions to linear operator equations when the data are noisy’, SIAM J. Numer. Anal.14, 651-667. · Zbl 0402.65032
[363] Z.Wang, A. C.Bovik, H. R.Sheikh and E. P.Simoncelli (2004), ‘Image quality assessment: From error visibility to structural similarity’, IEEE Trans. Image Process.13, 600-612.
[364] Y.Xu and W.Yin (2013), ‘A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion’, SIAM J. Imaging Sci.6, 1758-1789. · Zbl 1280.49042
[365] Y.Xu and W.Yin (2017), ‘A globally convergent algorithm for nonconvex optimization based on block coordinate update’, J. Sci. Comput.72, 700-734. · Zbl 1378.65126
[366] Y.Yang, J.Ma and S.Osher (2013), ‘Seismic data reconstruction via matrix completion’, Inverse Probl. Imaging7, 1379-1392. · Zbl 1292.15017
[367] W.Yin (2010), ‘Analysis and generalizations of the linearized Bregman method’, SIAM J. Imaging Sci.3, 856-877. · Zbl 1211.68491
[368] W.Yin, S.Osher, D.Goldfarb and J.Darbon (2008), ‘Bregman iterative algorithms for <![CDATA \([\ell_1]]\)>-minimization with applications to compressed sensing’, SIAM J. Imaging Sci.1, 143-168. · Zbl 1203.90153
[369] C.Zach, T.Pock and H.Bischof (2007), A duality based approach for realtime TV-L^1 optical flow, Pattern Recognition: 29th DAGM Symposium, (F. A.Hamprecht, eds), Vol. 4713 of Lecture Notes in Computer Science, Springer, pp. 214-223.
[370] L.Zeune, G.van Dalum, L. W.Terstappen, S. A.van Gils and C.Brune (2017), ‘Multiscale segmentation via Bregman distances and nonlinear spectral analysis’, SIAM J. Imaging Sci.10, 111-146. · Zbl 1372.35315
[371] F.Zhao, D. C.Noll, J.-F.Nielsen and J. A.Fessler (2012), ‘Separate magnitude and phase regularization via compressed sensing’, IEEE Trans. Medical Imaging31, 1713-1723.
[372] M.Zhu and T.Chan (2008), An efficient primal – dual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.