×

Sparse spikes super-resolution on thin grids II: the continuous basis pursuit. (English) Zbl 1392.35332

The article investigates the continuous basis pursuit (C-BP) method for sparse super-resolution of spikes. As for the basis persuit (BP) method (Lasso) which solves an inverse problem of an integral equation in Hilbert space by using discrete \(l^1\) approximations (Fourier coefficients), the authors use a first order Taylor approximation of the integral kernel (C-BP) for improving the BP. C-BP turns out to be a constrained Lasso. Optimality conditions are derived and used in the proofs together with duality arguments. C-BP identifies under some constellations the spikes locations with sub-grid accuracy and can avoid that a spike appears by a pair of two dirac masses. However for too thin grids the pair of dirac masses cannot be avoided as known from Lasso. All results are detailed proven. Several illustrative examples underline the presented results and the improvement of the new approach.
For Part I, see [the authors, ibid. 33, No. 5, Article ID 055008, 29 p. (2017; Zbl 1373.65039)].

MSC:

35R30 Inverse problems for PDEs
90C25 Convex programming
90C46 Optimality conditions and duality in mathematical programming
90C59 Approximation methods and heuristics in mathematical programming
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
49N45 Inverse problems in optimal control

Citations:

Zbl 1373.65039

Software:

PDCO

References:

[1] Azais J M, De Castro Y and Gamboa F 2015 Spike detection from inaccurate samplings 38 177-95 Appl. Comput. Harmonical Anal. · Zbl 1308.94046 · doi:10.1016/j.acha.2014.03.004
[2] Baksalary J K and Baksalary O M 2007 Particular formulae for the Moore-Penrose inverse of a columnwise partitioned matrix Linear Algebra Appl.421 16-23 · Zbl 1116.15003 · doi:10.1016/j.laa.2006.03.031
[3] Bauschke H H and Combettes P L 2011 Convex Analysis and Monotone Operator Theory in Hilbert Spaces (New York: Springer) · Zbl 1218.47001 · doi:10.1007/978-1-4419-9467-7
[4] Bredies K and Pikkarainen H 2013 Inverse problems in spaces of measures ESAIM: Control Optimisation Calculus Variations19 190-218 · Zbl 1266.65083 · doi:10.1051/cocv/2011205
[5] Candès E J and Fernandez-Granda C 2013 Super-resolution from noisy data J. Fourier Anal. Appl.19 1229-54 · Zbl 1312.94015 · doi:10.1007/s00041-013-9292-3
[6] Candès E J and Fernandez-Granda C 2013 Towards a mathematical theory of super-resolution Commun. Pure Appl. Math.67 906-56 · Zbl 1350.94011 · doi:10.1002/cpa.21455
[7] Chen S, Donoho D and Saunders M 1999 Atomic decomposition by basis pursuit SIAM J. Sci. Comput.20 33-61 · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[8] Dal Maso G 1993 An Introduction to Γ-Convergence(Progress in Nonlinear Differential Equations and Their Applications vol 8) (Boston, MA: Birkhauser) · Zbl 0816.49001 · doi:10.1007/978-1-4612-0327-8
[9] de Castro Y and Gamboa F 2012 Exact reconstruction using Beurling minimal extrapolation J. Math. Anal. Appl.395 336-54 · Zbl 1302.94019 · doi:10.1016/j.jmaa.2012.05.011
[10] Denoyelle Q, Duval V and Peyré G 2016 Support recovery for sparse deconvolution of positive measures J. Fourier Anal. Appl.2016 1-42 · Zbl 1417.65223 · doi:10.1007/s00041-016-9502-x
[11] Duval V and Peyré G 2015 Exact support recovery for sparse spikes deconvolution to appear in Found. Comput. Math.15 1315-55 · Zbl 1327.65104 · doi:10.1007/s10208-014-9228-6
[12] Duval V and Peyré G 2016 Sparse spikes retrieval on thin grids I: the LASSO 33 055008 Inverse Problems · Zbl 1373.65039 · doi:10.1088/1361-6420/aa5e12
[13] Ekanadham C, Tranchina D and Simoncelli E 2011 Recovery of sparse translation-invariant signals with continuous basis pursuit IEEE Trans. Signal Process.59 4735-44 · Zbl 1392.94192 · doi:10.1109/TSP.2011.2160058
[14] Ekanadham C, Tranchina D and Simoncelli E 2014 A unified framework and method for automatic neural spike identification J. Neurosci. Methods222 47-55 · doi:10.1016/j.jneumeth.2013.10.001
[15] Fernandez-Granda C 2013 Support detection in super-resolution Proc. of the 10th Int. Conf. on Sampling Theory and Applications pp 145-8
[16] Florescu A, Chouzenoux E, Pesquet J C and Ciochina S 2013 A constrained optimization approach for complex sparse perturbed models Proc. Signal Process. Adapt. Sparse Struct. Representations (SPARS 2013) (Lausanne, Switerzerland, 8-11 July 2013)
[17] Fuchs J 2004 On sparse representations in arbitrary redundant bases IEEE Trans. Inf. Theory50 1341-4 · Zbl 1284.94018 · doi:10.1109/TIT.2004.828141
[18] Horn R A and Johnson C R 2012 Matrix Analysis 2nd edn (New York, NY: Cambridge University Press) · doi:10.1017/CBO9781139020411
[19] Rockafellar R T, Wets R J B and Wets M 1998 Variational Analysis(Grundlehren der Mathematischen Wissenschaften) (Berlin: Springer) · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[20] Schiebinger G, Robeva E and Recht B 2017 Superresolution without separation Inf. Inference iax006 · Zbl 1446.94027 · doi:10.1093/imaiai/iax006
[21] Tang G and Recht B 2013 Atomic decomposition of mixtures of translation-invariant signals IEEE CAMSAP
[22] Tibshirani R 1996 Regression shrinkage and selection via the Lasso J. R. Stat. Soc. B: Methodol.58 267-88 · Zbl 0850.62538 · doi:10.1111/j.1467-9868.2011.00771.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.