×

Adaptive scaled boundary finite element method for two/three-dimensional structural topology optimization based on dynamic responses. (English) Zbl 1539.74476

Summary: This paper presents an efficient solution for designing the topology of structures that can withstand dynamic loads. The method, called image/stereolithography (STL)-based adaptive scaled boundary finite element (SBFE), is a novel approach to topology optimization (TO) that is particularly effective for designing two/three-dimensional structures. The SBFE-based TO algorithm adopts a bi-evolutionary structural optimization (BESO) approach, which utilizes image/STL-based procedures to automatically adapt meshes and minimize mechanical compliance under varying volume fractions in the time domain. A key advantage of this approach is that it uses images of TO responses, rather than specific error functions, to guide the automatic adaptive mesh schemes. The method also incorporates a quadtree/octree mesh refinement to address the problem of hanging nodes, ensuring fast mesh convergence during the optimization process. Furthermore, a high-order implicit time integration technique provides a close approximation of equivalent static loads, allowing for the accurate mapping of displacement fields under actual dynamic responses at each time step. The effectiveness of this method is demonstrated through a variety of numerical examples and benchmarks.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74P15 Topological methods for optimization problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics

Software:

top.m; top88.m
Full Text: DOI

References:

[1] Xia, L.; Xia, Q.; Huang, X.; Xie, Y. M., Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review, Arch. Comput. Methods Eng., 25, 437-478, 2018 · Zbl 1392.74074
[2] Zhu, B.; Zhang, X.; Zhang, H.; Liang, J.; Zang, H.; Li, H.; Wang, R., Design of compliant mechanisms using continuum topology optimization: A review, Mech. Mach. Theory, 143, Article 103622 pp., 2020
[3] Wang, C.; Zhao, Z.; Zhou, M.; Sigmund, O.; Zhang, X. S., A comprehensive review of educational articles on structural and multidisciplinary optimization, Struct. Multidiscip. Optim., 1-54, 2021
[4] Gao, J.; Xiao, M.; Zhang, Y.; Gao, L., A comprehensive review of isogeometric topology optimization: methods, applications and prospects, Chin. J. Mech. Eng., 33, 1, 1-14, 2020
[5] Gai, Y.; Xing, J.; Hu, P., Efficient MATLAB implementation of NURBS-based IGA and material design using isogeometric topology optimization, Opt. Eng., 1-36, 2022
[6] Li, E.; Chang, C.; He, Z.; Zhang, Z.; Li, Q., Smoothed finite element method for topology optimization involving incompressible materials, Eng. Optim., 48, 12, 2064-2089, 2016
[7] Lee, C.; Natarajan, S.; Kee, S.; Yee, J., A cell-based linear smoothed finite element method for polygonal topology optimization, Comput. Model. Eng. Sci., 131, 3, 1615-1634, 2022
[8] Wei, P.; Wang, M. Y.; Xing, X., A study on X-FEM in continuum structural optimization using a level set model, Comput. Aided Des., 42, 8, 708-719, 2010
[9] Geiss, M. J.; Barrera, J. L.; Boddeti, N.; Maute, K., A regularization scheme for explicit level-set XFEM topology optimization, Front. Mech. Eng., 14, 153-170, 2019
[10] Parvizian, J.; Düster, A.; Rank, E., Topology optimization using the finite cell method, Opt. Eng., 13, 1, 57-78, 2012 · Zbl 1293.74357
[11] Gao, Y.; Guo, Y.; Zheng, S., A NURBS-based finite cell method for structural topology optimization under geometric constraints, Comput. Aided Geom. Design, 72, 1-18, 2019 · Zbl 1505.65057
[12] Wolf, J. P.; Song, C., The scaled boundary finite-element method-a primer: derivations, Comput. Struct., 78, 1-3, 191-210, 2000
[13] Song, C.; Wolf, J. P., The scaled boundary finite-element method-a primer: solution procedures, Comput. Struct., 78, 1-3, 211-225, 2000
[14] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation, 2018, John Wiley & Sons
[15] Deeks, A. J.; Wolf, J. P., A virtual work derivation of the scaled boundary finite-element method for elastostatics, Comput. Mech., 28, 489-504, 2002 · Zbl 1076.74552
[16] Song, C., The scaled boundary finite element method in structural dynamics, Internat. J. Numer. Methods Engrg., 77, 8, 1139-1171, 2009 · Zbl 1156.74387
[17] Zhang, J.; Ankit, A.; Gravenkamp, H.; Eisenträger, S.; Song, C., A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes, Comput. Methods Appl. Mech. Engrg., 380, Article 113811 pp., 2021 · Zbl 1506.74507
[18] He, K.; Song, C.; Ooi, E. T., A novel scaled boundary finite element formulation with stabilization and its application to image-based elastoplastic analysis, Internat. J. Numer. Methods Engrg., 115, 8, 956-985, 2018 · Zbl 07865133
[19] Yang, Z.; Yao, F.; Ooi, E.; Chen, X., A scaled boundary finite element formulation for dynamic elastoplastic analysis, Internat. J. Numer. Methods Engrg., 120, 4, 517-536, 2019 · Zbl 07859708
[20] Liu, L.; Zhang, J.; Song, C.; He, K.; Saputra, A. A.; Gao, W., Automatic scaled boundary finite element method for three-dimensional elastoplastic analysis, Int. J. Mech. Sci., 171, Article 105374 pp., 2020
[21] Sun, Z.; Ooi, E. T.; Song, C., Finite fracture mechanics analysis using the scaled boundary finite element method, Eng. Fract. Mech., 134, 330-353, 2015
[22] Song, C.; Ooi, E. T.; Natarajan, S., A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics, Eng. Fract. Mech., 187, 45-73, 2018
[23] Egger, A.; Pillai, U.; Agathos, K.; Kakouris, E.; Chatzi, E.; Aschroft, I. A.; Triantafyllou, S. P., Discrete and phase field methods for linear elastic fracture mechanics: a comparative study and state-of-the-art review, Appl. Sci., 9, 12, 2436, 2019
[24] Pramod, A.; Annabattula, R.; Ooi, E.; Song, C.; Natarajan, S., Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 355, 284-307, 2019 · Zbl 1441.74206
[25] Ankit, A.; Song, C.; Eisenträger, S.; Zhang, S.; Hamed, E., Dynamic non-local damage analysis using an octree pattern-based massively parallel explicit solver, Comput. Methods Appl. Mech. Engrg., 400, Article 115598 pp., 2022 · Zbl 1507.74364
[26] Zhang, Z.; Dissanayake, D.; Saputra, A.; Wu, D.; Song, C., Three-dimensional damage analysis by the scaled boundary finite element method, Comput. Struct., 206, 1-17, 2018
[27] Zhang, Z.; Liu, Y.; Dissanayake, D. D.; Saputra, A. A.; Song, C., Nonlocal damage modelling by the scaled boundary finite element method, Eng. Anal. Bound. Elem., 99, 29-45, 2019 · Zbl 1464.74352
[28] Xing, W.; Song, C.; Tin-Loi, F., A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems, Comput. Methods Appl. Mech. Engrg., 333, 114-146, 2018 · Zbl 1440.74241
[29] Xing, W.; Zhang, J.; Song, C.; Tin-Loi, F., A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 347, 928-956, 2019 · Zbl 1440.74251
[30] Pramod, A.; Ooi, E. T.; Song, C.; Natarajan, S., An adaptive scaled boundary finite element method for contact analysis, Eur. J. Mech. A Solids, 86, Article 104180 pp., 2021 · Zbl 1479.74119
[31] Jiang, S.; Wan, C.; Sun, L.; Du, C., Flaw classification and detection in thin-plate structures based on scaled boundary finite element method and deep learning, Internat. J. Numer. Methods Engrg., 123, 19, 4674-4701, 2022 · Zbl 1531.74044
[32] Ooi, E. T.; Song, C.; Natarajan, S., Construction of high-order complete scaled boundary shape functions over arbitrary polygons with bubble functions, Internat. J. Numer. Methods Engrg., 108, 9, 1086-1120, 2016 · Zbl 07870084
[33] Zang, Q.; Bordas, S. P.; Liu, J.; Natarajan, S., NURBS-enhanced polygonal scaled boundary finite element method for heat diffusion in anisotropic media with internal heat sources, Eng. Anal. Bound. Elem., 148, 279-292, 2023 · Zbl 1521.74271
[34] Sauren, B.; Klarmann, S.; Kobbelt, L.; Klinkel, S., A mixed polygonal finite element formulation for nearly-incompressible finite elasticity, Comput. Methods Appl. Mech. Engrg., 403, Article 115656 pp., 2023 · Zbl 1536.74274
[35] Zou, D.; Teng, X.; Chen, K.; Liu, J., A polyhedral scaled boundary finite element method for three-dimensional dynamic analysis of saturated porous media, Eng. Anal. Bound. Elem., 101, 343-359, 2019 · Zbl 1464.76068
[36] Ooi, E.; Saputra, A.; Natarajan, S.; Ooi, E.; Song, C., A dual scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Comput. Mech., 66, 27-47, 2020 · Zbl 1464.74195
[37] Zhang, J.; Natarajan, S.; Ooi, E. T.; Song, C., Adaptive analysis using scaled boundary finite element method in 3D, Comput. Methods Appl. Mech. Engrg., 372, Article 113374 pp., 2020 · Zbl 1506.74475
[38] Ya, S.; Eisenträger, S.; Song, C.; Li, J., An open-source ABAQUS implementation of the scaled boundary finite element method to study interfacial problems using polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 381, Article 113766 pp., 2021 · Zbl 1506.74473
[39] Saputra, A.; Talebi, H.; Tran, D.; Birk, C.; Song, C., Automatic image-based stress analysis by the scaled boundary finite element method, Internat. J. Numer. Methods Engrg., 109, 5, 697-738, 2017 · Zbl 07874320
[40] Guo, H.; Ooi, E.; Saputra, A.; Yang, Z.; Natarajan, S.; Ooi, E.; Song, C., A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete, Eng. Fract. Mech., 211, 420-441, 2019
[41] Liu, Y.; Saputra, A. A.; Wang, J.; Tin-Loi, F.; Song, C., Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Engrg., 313, 106-132, 2017 · Zbl 1439.74444
[42] Liu, L.; Zhang, J.; Song, C.; Birk, C.; Gao, W., An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563-581, 2019
[43] Zhang, W.; Xiao, Z.; Liu, C.; Mei, Y.; Youn, S.-k.; Guo, X., A scaled boundary finite element based explicit topology optimization approach for three-dimensional structures, Internat. J. Numer. Methods Engrg., 121, 21, 4878-4900, 2020 · Zbl 07863246
[44] Díaaz, A. R.; Kikuchi, N., Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Internat. J. Numer. Methods Engrg., 35, 7, 1487-1502, 1992 · Zbl 0767.73046
[45] Min, S.; Kikuchi, N.; Park, Y.; Kim, S.; Chang, S., Optimal topology design of structures under dynamic loads, Struct. Multidiscip. Optim., 17, 2-3, 208-218, 1999
[46] Pedersen, N. L., Maximization of eigenvalues using topology optimization, Struct. Multidiscip. Optim., 20, 2-11, 2000
[47] Du, J.; Olhoff, N., Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps, Struct. Multidiscip. Optim., 34, 2, 91-110, 2007 · Zbl 1273.74398
[48] Huang, X.; Zuo, Z.; Xie, Y., Evolutionary topological optimization of vibrating continuum structures for natural frequencies, Comput. Struct., 88, 5-6, 357-364, 2010
[49] Olhoff, N.; Du, J., Generalized incremental frequency method for topological designof continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency, Struct. Multidiscip. Optim., 54, 1113-1141, 2016
[50] Zhao, X.; Wu, B.; Li, Z.; Zhong, H., A method for topology optimization of structures under harmonic excitations, Struct. Multidiscip. Optim., 58, 475-487, 2018
[51] Choi, W.-S.; Park, G.-J., Structural optimization using equivalent static loads at all time intervals, Comput. Methods Appl. Mech. Engrg., 191, 19-20, 2105-2122, 2002 · Zbl 1131.74327
[52] Zhao, J.; Wang, C., Dynamic response topology optimization in the time domain using model reduction method, Struct. Multidiscip. Optim., 53, 101-114, 2016
[53] Jang, H.-H.; Lee, H.-A.; Lee, J.; Park, G., Dynamic response topology optimization in the time domain using equivalent static loads, AIAA J., 50, 1, 226-234, 2012
[54] Lee, H.-A.; Park, G.-J., Topology optimization for structures with nonlinear behavior using the equivalent static loads method, 2012
[55] Lee, H.-A.; Park, G.-J., Nonlinear dynamic response topology optimization using the equivalent static loads method, Comput. Methods Appl. Mech. Engrg., 283, 956-970, 2015 · Zbl 1423.74751
[56] Giraldo-Londoño, O.; Paulino, G. H., PolyDyna: a matlab implementation for topology optimization of structures subjected to dynamic loads, Struct. Multidiscip. Optim., 64, 2, 957-990, 2021
[57] Bathe, K., Finite Element Procedures, 2014, Prentice Hall, Person Education, Inc: Prentice Hall, Person Education, Inc Watertown, MA
[58] Bathe, K.-J.; Baig, M. M.I., On a composite implicit time integration procedure for nonlinear dynamics, Comput. Struct., 83, 31-32, 2513-2524, 2005
[59] Kim, W.; Reddy, J., An improved time integration algorithm: A collocation time finite element approach, Int. J. Struct. Stab. Dyn., 17, 02, Article 1750024 pp., 2017 · Zbl 1535.74643
[60] Kim, W.; Choi, S. Y., An improved implicit time integration algorithm: The generalized composite time integration algorithm, Comput. Struct., 196, 341-354, 2018
[61] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 3, 67-94, 1959
[62] Hilber, H. M.; Hughes, T. J.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 3, 283-292, 1977
[63] Chung, J.; Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\( \alpha\) method, 1993 · Zbl 0775.73337
[64] Song, C.; Eisenträger, S.; Zhang, X., High-order implicit time integration scheme based on Padé expansions, Comput. Methods Appl. Mech. Engrg., 390, Article 114436 pp., 2022 · Zbl 1507.65120
[65] Song, C.; Zhang, X.; Eisenträger, S.; Kumar, A. S., High-order implicit time integration scheme with controllable numerical dissipation based on mixed-order Padé expansions, Comput. Struct., 285, Article 107071 pp., 2023
[66] Ankit, A.; Zhang, J.; Eisenträger, S.; Song, C., An octree pattern-based massively parallel PCG solver for elasto-static and dynamic problems, Comput. Methods Appl. Mech. Engrg., 404, Article 115779 pp., 2023 · Zbl 1536.74243
[67] Yerry, M.; Shephard, M., A modified quadtree approach to finite element mesh generation, IEEE Comput. Graph. Appl., 3, 01, 39-46, 1983
[68] Natarajan, S.; Ooi, E. T.; Song, C., Finite element computations over quadtree meshes: strain smoothing and semi-analytical formulation, Int. J. Adv. Eng. Sci. Appl. Math., 7, 124-133, 2015 · Zbl 1342.74168
[69] Ooi, E.; Man, H.; Natarajan, S.; Song, C., Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling, Eng. Fract. Mech., 144, 101-117, 2015
[70] Zhang, J.; Song, C., A polytree based coupling method for non-matching meshes in 3D, Comput. Methods Appl. Mech. Engrg., 349, 743-773, 2019 · Zbl 1441.74292
[71] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1-16, 2011 · Zbl 1274.74310
[72] Song, C., A matrix function solution for the scaled boundary finite-element equation in statics, Comput. Methods Appl. Mech. Engrg., 193, 23-26, 2325-2356, 2004 · Zbl 1067.74586
[73] Song, C.; Wolf, J. P., The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics, Comput. Methods Appl. Mech. Engrg., 147, 3-4, 329-355, 1997 · Zbl 0897.73069
[74] Song, C.; Wolf, J. P., Body loads in scaled boundary finite-element method, Comput. Methods Appl. Mech. Engrg., 180, 1-2, 117-135, 1999 · Zbl 0947.74071
[75] Li, J.; Liu, L., An efficient SBFEM-based approach for transient exterior vibro-acoustic analysis of power-law functionally graded shells, Thin-Walled Struct., 186, Article 110652 pp., 2023
[76] Gravenkamp, H.; Birk, C.; Song, C., Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method, J. Comput. Phys., 295, 438-455, 2015 · Zbl 1349.74352
[77] Jiang, S.; Deng, W.; Ooi, E. T.; Sun, L.; Du, C., Data-driven algorithm based on the scaled boundary finite element method and deep learning for the identification of multiple cracks in massive structures, Comput. Struct., 291, Article 107211 pp., 2024
[78] Huang, X.; Xie, Y. M.; Burry, M. C., A new algorithm for bi-directional evolutionary structural optimization, JSME Int. J. Ser. C, 49, 4, 1091-1099, 2006
[79] Gan, N.; Wang, Q., Topology optimization of multiphase materials with dynamic and static characteristics by BESO method, Adv. Eng. Softw., 151, Article 102928 pp., 2021
[80] Xia, L.; Zhang, L.; Xia, Q.; Shi, T., Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Engrg., 333, 356-370, 2018 · Zbl 1440.74322
[81] Bendsoe, M. P.; Sigmund, O., Topology optimization: theory, methods, and applications, 2013, Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.