×

A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes. (English) Zbl 1506.74507

Summary: Typical areas of application of explicit dynamics are impact, crash test, and most importantly, wave propagation simulations. Due to the numerically highly demanding nature of these problems, efficient automatic mesh generators and transient solvers are required. To this end, a parallel explicit solver exploiting the advantages of balanced octree meshes is introduced. To avoid the hanging nodes problem encountered in standard finite element analysis (FEA), the scaled boundary finite element method (SBFEM) is deployed as a spatial discretization scheme. Consequently, arbitrarily shaped star-convex polyhedral elements are straightforwardly generated. Considering the scaling and transformation of octree cells, the stiffness and mass matrices of a limited number of unique cell patterns are pre-computed. A recently proposed mass lumping technique is extended to 3D yielding a well-conditioned diagonal mass matrix. This enables us to leverage the advantages of explicit time integrator, i.e., it is possible to efficiently compute the nodal displacements without the need for solving a system of linear equations. We implement the proposed scheme together with a central difference method (CDM) in a distributed computing environment. The performance of our parallel explicit solver is evaluated by means of several numerical benchmark examples, including complex geometries and various practical applications. A significant speedup is observed for these examples with up to one billion of degrees of freedom and running on up to 16,384 computing cores.

MSC:

74S99 Numerical and other methods in solid mechanics
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
74M20 Impact in solid mechanics

References:

[1] Dupros, F.; De Martin, F.; Foerster, E.; Komatitsch, D.; Roman, J., High-performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media, Parallel Comput., 36, 308-325 (2010) · Zbl 1204.68251
[2] Brun, M.; Batti, A.; Limam, A.; Gravouil, A., Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure, Finite Elem. Anal. Des., 52, 41-59 (2012)
[3] Bettinotti, O.; Allix, O.; Perego, U.; Oancea, V.; Malherbe, B., Simulation of delamination under impact using a global-local method in explicit dynamics, Finite Elem. Anal. Des., 125, 1-13 (2017)
[4] Zhang, J.; Chauhan, S., Fast explicit dynamics finite element algorithm for transient heat transfer, Int. J. Therm. Sci., 139, 160-175 (2019)
[5] Meister, F.; Passerini, T.; Mihalef, V.; Tuysuzoglu, A.; Maier, A.; Mansi, T., Deep learning acceleration of total Lagrangian explicit dynamics for soft tissue mechanics, Comput. Methods Appl. Mech. Engrg., 358, Article 112628 pp. (2020) · Zbl 1441.74263
[6] Cook, R.; Malkus, D.; Plesha, M., Concepts and Applications of Finite Element Analysis (1989), Wiley · Zbl 0696.73039
[7] Patzák, B.; Rypl, D.; Bittnar, Z., Parallel explicit finite element dynamics with nonlocal constitutive models, Comput. Struct., 79, 2287-2297 (2001)
[8] Talebi, H.; Samaniego, C.; Samaniego, E.; Rabczuk, T., On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods, Internat. J. Numer. Methods Engrg., 89, 1009-1027 (2012) · Zbl 1242.74219
[9] Li, B.; Stalzer, M.; Ortiz, M., A massively parallel implementation of the optimal transportation meshfree method for explicit solid dynamics, Internat. J. Numer. Methods Engrg., 100, 40-61 (2014) · Zbl 1325.74166
[10] Park, K.; Chi, H.; Paulino, G. H., On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration, Comput. Methods Appl. Mech. Engrg., 356, 669-684 (2019) · Zbl 1441.74269
[11] Anitescu, C.; Nguyen, C.; Rabczuk, T.; Zhuang, X., Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass formulation, Comput. Methods Appl. Mech. Engrg., 346, 574-591 (2019) · Zbl 1440.74371
[12] Rek, V.; Němec, I., Parallel computation on multicore processors using explicit form of the finite element method and c++ standard libraries, J. Mech. Eng., 66, 67-78 (2016)
[13] Altman, Y. M., Accelerating MATLAB Performance: 1001 Tips to Speed Up MATLAB Programs (2014), CRC Press · Zbl 1303.68001
[14] Ma, Z.; Lou, Y.; Li, J.; Jin, X., An explicit asynchronous step parallel computing method for finite element analysis on multi-core clusters, Eng. Comput., 36, 443-453 (2020)
[15] Tang, J.; Zheng, Y.; Yang, C.; Wang, W.; Luo, Y., Parallelized implementation of the finite particle method for explicit dynamics in GPU, CMES Comput. Model. Eng. Sci., 122, 5-31 (2020)
[16] Song, C.; Wolf, J. P., The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput. Methods Appl. Mech. Engrg., 147, 329-355 (1997) · Zbl 0897.73069
[17] Deeks, A. J.; Wolf, J. P., An h-hierarchical adaptive procedure for the scaled boundary finite-element method, Internat. J. Numer. Methods Engrg., 54, 585-605 (2002) · Zbl 1098.74727
[18] Song, C., A super-element for crack analysis in the time domain, Internat. J. Numer. Methods Engrg., 61, 1332-1357 (2004) · Zbl 1075.74679
[19] Bazyar, M. H.; Song, C., A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry, Internat. J. Numer. Methods Engrg., 74, 209-237 (2008) · Zbl 1159.74417
[20] Ooi, E. T.; Iqbal, M. D.; Birk, C.; Natarajan, S.; Ooi, E. H.; Song, C., A polygon scaled boundary finite element formulation for transient coupled thermoelastic fracture problems, Eng. Fract. Mech., Article 107300 pp. (2020)
[21] Chiong, I.; Ooi, E. T.; Song, C.; Tin-Loi, F., Scaled boundary polygons with application to fracture analysis of functionally graded materials, Internat. J. Numer. Methods Engrg., 98, 562-589 (2014) · Zbl 1352.74020
[22] Gravenkamp, H.; Natarajan, S., Scaled boundary polygons for linear elastodynamics, Comput. Methods Appl. Mech. Engrg., 333, 238-256 (2018) · Zbl 1440.74059
[23] Talebi, H.; Saputra, A. A.; Song, C., Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements, Comput. Mech., 58, 697-715 (2016) · Zbl 1398.74409
[24] Saputra, A.; Talebi, H.; Tran, D.; Birk, C.; Song, C., Automatic image-based stress analysis by the scaled boundary finite element method, Internat. J. Numer. Methods Engrg., 109, 697-738 (2017) · Zbl 07874320
[25] Saputra, A. A.; Duczek, S.; Gravenkamp, H.; Song, C., Image-based 3D homogenisation using the scaled boundary finite element method, Comput. Struct., 237, Article 106263 pp. (2020)
[26] Gravenkamp, H.; Saputra, A. A.; Eisenträger, S., Three-dimensional image-based modeling by combining SBFEM and transfinite element shape functions, Comput. Mech., 1-20 (2020) · Zbl 1466.74044
[27] Duczek, S.; Saputra, A.; Gravenkamp, H., High order transition elements: The xNy-element concept-part i: Statics, Comput. Methods Appl. Mech. Engrg., 362, Article 112833 pp. (2020) · Zbl 1439.74408
[28] Saputra, A. A.; Sladek, V.; Sladek, J.; Song, C., Micromechanics determination of effective material coefficients of cement-based piezoelectric ceramic composites, J. Intell. Mater. Syst. Struct., 29, 845-862 (2017)
[29] Gravenkamp, H.; Duczek, S., Automatic image-based analyses using a coupled quadtree-SBFEM/SCM approach, Comput. Mech., 60, 559-584 (2017) · Zbl 1386.94008
[30] Liu, L.; Zhang, J.; Song, C.; Birk, C.; Gao, W., An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563-581 (2019)
[31] Liu, L.; Zhang, J.; Song, C.; Birk, C.; Saputra, A. A.; Gao, W., Automatic three-dimensional acoustic-structure interaction analysis using the scaled boundary finite element method, J. Comput. Phys., 395, 432-460 (2019) · Zbl 1452.65350
[32] Xing, W.; Song, C.; Tin-Loi, F., A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems, Comput. Methods Appl. Mech. Engrg., 333, 114-146 (2018) · Zbl 1440.74241
[33] Xing, W.; Zhang, J.; Song, C.; Tin-Loi, F., A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 347, 928-956 (2019) · Zbl 1440.74251
[34] Zhang, J.; Song, C., A polytree based coupling method for non-matching meshes in 3D, Comput. Methods Appl. Mech. Engrg., 349, 743-773 (2019) · Zbl 1441.74292
[35] Gravenkamp, H.; Prager, J.; Saputra, A. A.; Song, C., The simulation of lamb waves in a cracked plate using the scaled boundary finite element method, J. Acoust. Soc. Am., 132, 1358-1367 (2012)
[36] Gravenkamp, H.; Song, C.; Prager, J., A numerical approach for the computation of dispersion relations for plate structures using the scaled boundary finite element method, J. Sound Vib., 331, 2543-2557 (2012)
[37] Gravenkamp, H.; Saputra, A. A.; Song, C.; Birk, C., Efficient wave propagation simulation on quadtree meshes using SBFEM with reduced modal basis, Internat. J. Numer. Methods Engrg., 110, 1119-1141 (2017) · Zbl 07866624
[38] Zou, D.; Teng, X.; Chen, K.; Liu, J., A polyhedral scaled boundary finite element method for three-dimensional dynamic analysis of saturated porous media, Eng. Anal. Bound. Elem., 101, 343-359 (2019) · Zbl 1464.76068
[39] Zhang, J.; Eisenträger, J.; Duczek, S.; Song, C., Discrete modeling of fiber reinforced composites using the scaled boundary finite element method, Compos. Struct., 235, Article 111744 pp. (2020)
[40] Liu, L.; Zhang, J.; Song, C.; He, K.; Saputra, A. A.; Gao, W., Automatic scaled boundary finite element method for three-dimensional elastoplastic analysis, Int. J. Mech. Sci., 171, Article 105374 pp. (2020)
[41] Natarajan, S.; Dharmadhikari, P.; Annabattula, R. K.; Zhang, J.; Ooi, E. T.; Song, C., Extension of the scaled boundary finite element method to treat implicitly defined interfaces without enrichment, Comput. Struct., 229, Article 106159 pp. (2020)
[42] Eisenträger, J.; Zhang, J.; Song, C.; Eisenträger, S., An SBFEM approach for rate-dependent inelasticity with application to image-based analysis, Int. J. Mech. Sci., 182, Article 105778 pp. (2020)
[43] Qu, Y.; Zou, D.; Kong, X.; Yu, X.; Chen, K., Seismic cracking evolution for anti-seepage face slabs in concrete faced rockfill dams based on cohesive zone model in explicit SBFEM-FEM frame, Soil Dyn. Earthq. Eng., 133, Article 106106 pp. (2020)
[44] Liu, Y.; Saputra, A. A.; Wang, J.; Tin-Loi, F.; Song, C., Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Engrg., 313, 106-132 (2017) · Zbl 1439.74444
[45] Song, C., The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation (2018), John Wiley & Sons
[46] Zhang, J.; Natarajan, S.; Ooi, E. T.; Song, C., Adaptive analysis using scaled boundary finite element method in 3D, Comput. Methods Appl. Mech. Engrg., 372, Article 113374 pp. (2020) · Zbl 1506.74475
[47] Gravenkamp, H.; Song, C.; Zhang, J., On mass lumping and explicit dynamics in the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 370, Article 113274 pp. (2020) · Zbl 1506.74467
[48] Chan, T. F.; Gilbert, J. R.; Teng, S.-H., Geometric spectral partitioning (1994)
[49] Song, C., A matrix function solution for the scaled boundary finite-element equation in statics, Comput. Methods Appl. Mech. Engrg., 193, 2325-2356 (2004) · Zbl 1067.74586
[50] de Béjar, L. A.; Danielson, K. T., Critical time-step estimation for explicit integration of dynamic higher-order finite-element formulations, J. Eng. Mech., 142, Article 04016043 pp. (2016)
[51] Duczek, S.; Gravenkamp, H., Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods, Comput. Methods Appl. Mech. Engrg., 353, 516-569 (2019) · Zbl 1441.74238
[52] Duczek, S.; Gravenkamp, H., Critical assessment of different mass lumping schemes for higher order serendipity finite elements, Comput. Methods Appl. Mech. Engrg., 350, 836-897 (2019) · Zbl 1441.74239
[53] Krysl, P.; Bittnar, Z., Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability, Comput. Struct., 79, 345-360 (2001)
[54] Knuth, D. E., Postscript about NP-hard problems, SIGACT News, 6, 15-16 (1974)
[55] Cvetkovic, D. M.; Doob, M.; Sachs, H., Spectra of Graphs, Vol. 10 (1980), Academic Press: Academic Press New York · Zbl 0458.05042
[56] Gilbert, J. R.; Miller, G. L.; Teng, S.-H., Geometric mesh partitioning: Implementation and experiments, SIAM J. Sci. Comput., 19, 2091-2110 (1998) · Zbl 0913.65107
[57] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392 (1998) · Zbl 0915.68129
[58] Ogawa, T., Parallelization of an adaptive cartesian mesh flow solver based on the 2n-tree data structure, (Matsuno, K.; Ecer, A.; Satofuka, N.; Periaux, J.; Fox, P., Parallel Computational Fluid Dynamics 2002 (2003), North-Holland: North-Holland Amsterdam), 441-448 · Zbl 1072.76585
[59] LaSalle, D.; Karypis, G., A parallel hill-climbing refinement algorithm for graph partitioning, (2016 45th International Conference on Parallel Processing (ICPP) (2016), IEEE), 236-241
[60] Li, Y., Meshpart (2018), https://github.com/YingzhouLi/meshpart
[61] Willberg, C.; Duczek, S.; Vivar Perez, J.; Schmicker, D.; Gabbert, U., Comparison of different higher order finite element schemes for the simulation of lamb waves, Comput. Methods Appl. Mech. Engrg., 241, 246-261 (2012) · Zbl 1353.74077
[62] Gravenkamp, H., Numerical Methods for the Simulation of Ultrasonic Guided Waves, Vol. 116 (2014), BAM-Berlin, (Dissertationsreihe)
[63] Dalcín, L.; Paz, R.; Storti, M., MPI For python, J. Parallel Distrib. Comput., 65, 1108-1115 (2005)
[64] Dalcín, L.; Paz, R.; Storti, M.; DElía, J., MPI For python: Performance improvements and MPI-2 extensions, J. Parallel Distrib. Comput., 68, 655-662 (2008)
[65] Dalcin, L. D.; Paz, R. R.; Kler, P. A.; Cosimo, A., Parallel distributed computing using python, Adv. Water Resour., 34, 1124-1139 (2011)
[66] Chang, J.; Nakshatrala, K.; Knepley, M. G.; Johnsson, L., A performance spectrum for parallel computational frameworks that solve PDEs, Concurr. Comput.: Pract. Exper., 30, Article e4401 pp. (2018)
[67] Chamberlin, T., Terrain2stl (2020), https://www.jthatch.com/Terrain2STL/
[68] Joulaian, M., The Hierarchical Finite Cell Method for Problems in Structural Mechanics (2017), VDI Fortschritt-Berichte Reihe 18 Nr. 348
[69] Mossaiby, F.; Joulaian, M.; Düster, A., The spectral cell method for wave propagation in heterogeneous materials simulated on multiple GPUs and CPUs, Comput. Mech., 63, 805-819 (2019) · Zbl 1462.74170
[70] Nieuwenhius, J. H.; Neumann, J.; Greve, D. W.; Oppenheim, I. J., Generation and detection of guided waves using PZT wafer transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 2103-2111 (2005)
[71] D.W. Greve, J.J. Neumann, J.H. Nieuwenhius, I.J. Oppenheim, N.L. Tyson, Use of Lamb waves to monitor plates: Experiments and simulations, in: Proceedinggs of SPIE Vol. 5765, 2005.
[72] Giurgiutiu, V., Structural Health Monitoring with Piezoelectric Active Wafer Sensors: Fundamentals and Applications (2008), Elsevier
[73] Viktorov, I. A., Rayleigh and Lamb Waves (1967), Ultrasonic Technology, Plenum Press
[74] Rose, J. L., Ultrasonic Waves in Solid Media (1999), Cambridge University Press
[75] Provatidis, C. G., Precursors of Isogeometric Analysis (2019), Springer International Publishing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.