×

High-order implicit time integration scheme based on Padé expansions. (English) Zbl 1507.65120

Summary: A single-step high-order implicit time integration scheme for the solution of transient as well as wave propagation problems is presented. It is constructed from the Padé expansion of the matrix exponential solution of a system of first-order ordinary differential equations formulated in the state-space. By exploiting the techniques of polynomial factorization and partial fractions of rational functions, and by decoupling the solution for the displacement and velocity vectors a computationally efficient scheme is developed. An important feature of the novel algorithm is that no direct inversion of the mass matrix is required. Based on the diagonal Padé expansion of order \(M\) a time-stepping scheme of order \(2M\) is constructed. When \(M\) is odd, one system of equation with a real matrix and \((M-1)/2\) systems of equations with complex matrices are solved recursively. When \(M\) is even, there are \(M/2\) systems of equations with complex matrices. These systems are sparse and comparable in complexity to the standard Newmark method, i.e., the effective system matrix is a linear combination of the static stiffness, damping, and mass matrices. The derived second-order scheme is analytically equivalent to Newmark constant average acceleration method. The proposed time integrator has been implemented in MATLAB and FORTRAN using direct linear equation solvers. In this article, numerical examples featuring nearly one million degrees of freedom are presented to highlight the exceptional accuracy and efficiency of the novel time-stepping scheme in comparison with established second-order methods. The MATLAB- and FORTRAN- implementations are available from the authors upon request.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

Matlab

References:

[1] Bathe, K. J., Finite Element Procedures (2014), Prentice Hall
[2] Newmark, N. M., A method of computation for structural dynamics, ASCE J. Eng. Mech. Div., 85, 2067-2094 (1959)
[3] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 283-292 (1977)
[4] Reddy, Kim J. N., A comparative study of implicit and explicit composite time integration schemes, Int. J. Struct. Stab. Dyn., 20, 13, Article 2041003 pp. (2020) · Zbl 1535.65094
[5] Duczek, S.; Gravenkamp, H., Critical assessment of different mass lumping schemes for higher order serendipity finite elements, Comput. Methods Appl. Mech. Engrg., 350, 836-897 (2019) · Zbl 1441.74239
[6] Duczek, S.; Gravenkamp, H., Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods, Comput. Methods Appl. Mech. Engrg., 353, 516-569 (2019) · Zbl 1441.74238
[7] Geevers, S.; Mulder, W. A.; van der Vegt, J. J.W., New higher-order mass-lumped tetrahedral elements for wave propagation modelling, SIAM J. Sci. Comput., 40, 5, A2830-A2857 (2018) · Zbl 1397.65158
[8] Geevers, S.; Mulder, W. A.; van der Vegt, J. J.W., Efficient quadrature rules for computing the stiffness matrices of mass-lumped tetrahedral elements for linear wave problems, SIAM J. Sci. Comput., 41, 2, A1041-A1065 (2019) · Zbl 1414.65014
[9] Zhang, G.; Yang, Y.; Sun, G.; Zheng, H., A mass lumping scheme for the 10-node tetrahedral element, Eng. Anal. Bound. Elem., 106, 190-200 (2019) · Zbl 1464.74227
[10] Hinton, E.; Rock, T.; Zienkiewicz, O. C., A note on mass lumping and related processes in the finite element method, Earthq. Eng. Struct. Dyn., 4, 245-249 (1976)
[11] Anitescu, C.; Nguyen, C.; Rabczuk, T.; Zhuang, X., Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass formulation, Comput. Methods Appl. Mech. Engrg., 346, 574-591 (2019) · Zbl 1440.74371
[12] Bathe, K. J.; Baig, M. M.I., On a composite implicit time integration procedure for nonlinear dynamics, Comput. Struct., 83, 2513-2524 (2005)
[13] Bathe, K. J., Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme, Comput. Struct., 85, 437-445 (2007)
[14] Bathe, K. J.; Noh, G., Insight into an implicit time integration scheme for structural dynamics, Comput. Struct., 98-99, 1-6 (2012)
[15] Noh, G.; Ham, S.; Bathe, K. J., Performance of an implicit time integration scheme in the analysis of wave propagation, Comput. Struct., 123, 93-105 (2013)
[16] Noh, G.; Bathe, K.-J., Further insights into an implicit time integration scheme for structural dynamics, Comput. Struct., 202, 15-24 (2018)
[17] Noh, G.; Bathe, K.-J., The bathe time integration method with controllable spectral radius: The \(\rho_\infty \)-bathe method, Comput. Struct., 212, 299-310 (2019)
[18] Noh, G.; Bathe, K.-J., For direct time integrations: A comparison of the newmark and \(\rho_\infty \)-bathe schemes, Comput. Struct., 225, Article 106079 pp. (2019)
[19] Malakiyeh, M. M.; Shojaee, S.; Bathe, K.-J., The bathe time integration method revisited for prescribing desired numerical dissipation, Comput. Struct., 212, 289-298 (2019)
[20] Malakiyeh, M. M.; Shojaee, S.; Hamzehei-Javaran, S.; Bathe, K.-J., New insights into the \(\beta1/\beta 2\)-bathe time integration scheme when L-stable, Comput. Struct., 245, Article 106433 pp. (2021)
[21] Kim, W.; Reddy, J. N., An improved time integration algorithm: A collocation time finite element approach, Int. J. Struct. Stab. Dyn., 17, 02, Article 1750024 pp. (2017) · Zbl 1535.74643
[22] Kim, W.; Choi, S. Y., An improved implicit time integration algorithm: The generalized composite time integration algorithm, Comput. Struct., 196, 341-354 (2018)
[23] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical damping: The generalized-\( \alpha\) method, J. Appl. Mech., 60, 371-375 (1993) · Zbl 0775.73337
[24] Soares, D., A simple and effective single-step time marching technique based on adaptive time integrators, Internat. J. Numer. Methods Engrg., 109, 1344-1368 (2017) · Zbl 07874314
[25] Soares, D., Nonlinear dynamic analysis considering explicit and implicit time marching techniques with adaptive time integration parameters, Acta Mech., 229, 2097-2116 (2018)
[26] Soares, D., A model/solution-adaptive explicit-implicit time marching technique for wave propagation analysis, Internat. J. Numer. Methods Engrg., 119, 7, 590-617 (2019) · Zbl 07863922
[27] Soares, D., An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics, Comput. Methods Appl. Mech. Engrg., 354, 637-662 (2019) · Zbl 1441.74275
[28] Idesman, A. V., A new high-order accurate continuous Galerkin method for linear elastodynamics problems, Comput. Mech., 40, 261-279 (2007) · Zbl 1178.74167
[29] Kim, W.; Reddy, J. N., Effective higher-order time integration algorithms for the analysis of linear structural dynamics, J. Appl. Mech., 84, 7, Article 071009 pp. (2017)
[30] Kim, W.; Reddy, J. N., A new family of higher-order time integration algorithms for the analysis of structural dynamics, J. Appl. Mech., 84, 7, Article 071008 pp. (2017)
[31] Kim, W.; Lee, J. H., A comparative study of two families of higher-order accurate time integration algorithms, Int. J. Comput. Methods, 17, Article 1950048 pp. (2019) · Zbl 07336580
[32] Fung, T. C., A precise time-step integration method by step-response and impulsive-response matrices for dynamic problems, Internat. J. Numer. Methods Engrg., 40, 24, 4501-4527 (1997) · Zbl 0910.73074
[33] Soares, D., A straightforward high-order accurate time-marching procedure for dynamic analyses, Eng. Comput. (2020)
[34] Behnoudfar, P.; Deng, Q.; Calo, V. M., High-order generalized-\( \alpha\) methods, Appl. Eng. Sci., 4, Article 100021 pp. (2020)
[35] Behnoudfar, P.; Deng, Q.; Calo, V. M., Higher-order generalized-\( \alpha\) methods for hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 378, Article 113725 pp. (2021) · Zbl 1506.65101
[36] Reusch, M. F.; Ratzan, L.; Pomphrey, N.; Park, W., Diagonal padé approximations for initial value problems, SIAM J. Sci. Stat. Comput., 9, 829-838 (1988) · Zbl 0656.65057
[37] Zhong, W. X.; Williams, F. W., A precise time step integration method, Proc. Inst. Mech. Eng. C, 208, 6, 427-430 (1994)
[38] Fung, T. C.; Chen, Z. L., Precise time-step integration algorithms using response matrices with expanded dimension, AIAA J., 46, 8, 1900-1911 (2008)
[39] Golub, G. H.; van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[40] Wang, M.; Au, F. T.K., Precise integration method without inverse matrix calculation for structural dynamic equations, Earthq. Eng. Eng. Vib., 6, 1, 57-64 (2007)
[41] Wang, M.-F.; Au, F. T.K., Precise integration methods based on Lagrange piecewise interpolation polynomials, Internat. J. Numer. Methods Engrg., 77, 7, 998-1014 (2009) · Zbl 1183.74370
[42] Luan, V. T., Efficient exponential runge-kutta methods of high order: Construction and implementation, BIT Numer. Math. (2021) · Zbl 1471.65069
[43] Barucq, H.; Duruflé, M.; N’Diaye, M., High-order padé and singly diagonally runge-kutta schemes for linear ODEs, application to wave propagation problems, Numer. Methods Partial Differential Equations, 34, 2, 760-798 (2017) · Zbl 1390.65052
[44] Wolf, J. P., Consistent lumped-parameter models for unbounded soil: Physical representation, Earthq. Eng. Struct. Dyn., 20, 1, 11-32 (1991)
[45] Wolf, J. P.; Paronesso, A., Lumped-parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock, Earthq. Eng. Struct. Dyn., 21, 12, 1021-1038 (1992)
[46] Birk, C.; Ruge, P., Representation of radiation damping in a dam-reservoir interaction analysis based on a rational stiffness approximation, Comput. Struct., 85, 11, 1152-1163 (2007)
[47] Tamma, K. K.; Zhou, X.; Sha, D., The time dimension: A theory towards the evolution, classification, characterization and design of computational algorithms for transient/ dynamic applications, Arch. Comput. Methods Eng., 7, 2, 67-290 (2000) · Zbl 0987.74004
[48] Tamma, K. K.; Har, J.; Zhou, X.; Shimada, M.; Hoitink, A., An overview and recent advances in vector and scalar formalisms: Space/time discretizations in computational dynamics—a unified approach, Arch. Comput. Methods Eng., 18, 2, 119-283 (2011) · Zbl 1284.70005
[49] E. Gallopoulos, Y. Saad, On the parallel solution of parabolic equations, in: ICS’ 89: Proceedings of the 3rd International Conference on Supercomputing, 1989, pp. 17-28. · Zbl 0676.65098
[50] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296 (2006) · Zbl 1119.74024
[51] Kim, K.-T.; Bathe, K.-J., Accurate solution of wave propagation problems in elasticity, Comput. Struct., 249, Article 106502 pp. (2021)
[52] Song, C., The scaled boundary finite element method in structural dynamics, Internat. J. Numer. Methods Engrg., 77, 8, 1139-1171 (2009) · Zbl 1156.74387
[53] Hernandez, D. M.; Hadden, S.; Makino, J., Are long-term N-body simulations reliable?, Mon. Not. R. Astron. Soc., 493, 1913-1925 (2020)
[54] Chopra, A. K., Dynamics of structures: Theory and applications to earthquake engineering, (International Series in Civil Engineering and Engineering Mechanics (2019), Pearson Education)
[55] Kim, W., An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems, Internat. J. Numer. Methods Engrg., 120, 1, 1-28 (2019) · Zbl 07859723
[56] Tschöke, K.; Gravenkamp, H., On the numerical convergence and performance of different spatial discretization techniques for transient elastodynamic wave propagation problems, Wave Motion, 82, 62-85 (2018) · Zbl 1524.74446
[57] Soares, D., A simple and effective new family of time marching procedures for dynamics, Comput. Methods Appl. Mech. Engrg., 283, 1138-1166 (2015) · Zbl 1425.65077
[58] Gravenkamp, H.; Song, C.; Zhang, J., On mass lumping and explicit dynamics in the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 370, Article 113274 pp. (2020) · Zbl 1506.74467
[59] Willberg, C.; Duczek, S.; Vivar Perez, J. M.; Schmicker, D.; Gabbert, U., Comparison of different higher order finite element schemes for the simulation of lamb waves, Comput. Methods Appl. Mech. Engrg., 241-244, 246-261 (2012) · Zbl 1353.74077
[60] Karniadakis, G. E.; Sherwin, S. J., Spectral/ Hp Element Methods for Computational Fluid Dynamics (2005), Oxford Science Publications · Zbl 1116.76002
[61] Pozrikidis, C., Introduction to Finite and Spectral Element Methods using MATLAB (2014), Chapman and Hall/CRC · Zbl 1337.65001
[62] Zhang, J.; Gravenkamp, H.; Eisenträger, S.; Song, C., A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes, Comput. Meth. Appl. Mech. Eng., 380, 113811 (2021) · Zbl 1506.74507
[63] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 32-74 (1928) · JFM 54.0486.01
[64] Ham, S.; Bathe, K. J., A finite element method enriched for wave propagation problems, Comput. Struct., 94-95, 1-12 (2012)
[65] Song, C., The Scaled Boundary Finite Element Method (2018), John Wiley & Sons: John Wiley & Sons Ltd
[66] Saputra, A. A.; Talebi, H.; Tran, D.; Birk, C.; Song, C., Automatic image-based stress analysis by the scaled boundary finite element method, Internat. J. Numer. Methods Engrg., 109, 697-738 (2017) · Zbl 07874320
[67] Liu, Y.; Saputra, A. A.; Wang, J.; Tin-Loi, F.; Song, C., Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Engrg., 313, 106-132 (2017) · Zbl 1439.74444
[68] Talebi, H.; Saputra, A. A.; Song, C., Stress analysis of 3d complex geometries using the scaled boundary polyhedral finite elements, Comput. Mech., 58, 697-715 (2016) · Zbl 1398.74409
[69] Zhang, J.; Song, C., A polytree based coupling method for non-matching meshes in 3d, Comput. Methods Appl. Mech. Engrg., 349, 743-773 (2019) · Zbl 1441.74292
[70] Gantmacher, F. R., The Theory of Matrices (1977), Chelsea: Chelsea New York · Zbl 0085.01001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.