×

Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics. (English) Zbl 1507.65118

Summary: An implicit family of composite \(s\)-sub-step integration algorithms is developed in this paper. The proposed composite \(s\)-sub-step scheme is firstly designed to satisfy two requirements. One is the directly self-starting property, eliminating any starting procedures and avoiding computing the initial acceleration vector. The other is identical effective stiffness matrices within each sub-step, embedding optimal spectral properties. The analysis reveals that the composite \(s\)-sub-step implicit schemes with \(s\leq 6\) can achieve \(s\)th-order of accuracy when embedding the dissipation control and unconditional stability simultaneously, and that in case of \(s\geq 7\), the increase of accuracy requires more sub-steps. Then, only the first six economical composite multi-sub-step schemes are developed. Remarkably, two approaches are also constructed to output accurate accelerations, which is also regarded as another minor superiority. Unlike some published higher-order algorithms, the proposed methods do not suffer from the order reduction and they provide the designed order of accuracy for solving general structures. Linear and nonlinear examples are finally solved to confirm the numerical performance and superiority of the proposed methods.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

RODAS; Julia
Full Text: DOI

References:

[1] Hairer, E.; Nørsett, S. P.; Wanner, G., (Solving Ordinary Differential Equations I: Nonstiff Problems. Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8 (1993), Springer-Verlag Berlin Heidelberg) · Zbl 0789.65048
[2] Hairer, E.; Wanner, G., (Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14 (1996), Springer-Verlag Berlin Heidelberg) · Zbl 0859.65067
[3] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 3, 67-94 (1959)
[4] Wilson, E. L.; Farhoomand, I.; Bathe, K. J., Nonlinear dynamic analysis of complex structures, Earthq. Eng. Struct. Dyn., 1, 3, 241-252 (1972)
[5] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 3, 283-292 (1977)
[6] Wood, W.; Bossak, M.; Zienkiewicz, O., An alpha modification of Newmark’s method, Internat. J. Numer. Methods Engrg., 15, 10, 1562-1566 (1980) · Zbl 0441.73106
[7] Shao, H.; Cai, C., A three parameters algorithm for numerical integration of structural dynamic equations, Chin. J. Appl. Mech., 5, 4, 76-81 (1988)
[8] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\( \alpha\) method, J. Appl. Mech., 60, 2, 371-375 (1993) · Zbl 0775.73337
[9] Shimada, M.; Hoitink, A.; Tamma, K. K., The fundamentals underlying the computations of acceleration for general dynamic applications: Issues and noteworthy perspectives, CMES - Comput. Model. Eng. Sci., 104, 2, 133-158 (2015)
[10] Shimada, M.; Masuri, S.; Tamma, K. K., A novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systems, Internat. J. Numer. Methods Engrg., 102, 3-4, 867-891 (2015) · Zbl 1352.65371
[11] Rezaiee-Pajand, M.; Alamatian, J., Implicit higher-order accuracy method for numerical integration in dynamic analysis, J. Struct. Eng., 134, 6, 973-985 (2008) · Zbl 1257.74173
[12] Rezaiee-Pajand, M.; Sarafrazi, S. R., A mixed and multi-step higher-order implicit time integration family, Arch. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 1989-1996 (Vols 203-210), 1, 1, 1-12 (2010)
[13] Rezaiee-Pajand, M.; Sarafrazi, S. R., Stability and accuracy of non-linear dynamic analysis using time integration algorithms, Struct. Build., 165, 8, 455-471 (2012)
[14] Rezaiee-Pajand, M.; Sarafrazi, S. R.; Hashemian, M., Improving stability domains of the implicit higher order accuracy method, Internat. J. Numer. Methods Engrg., 88, 9, 880-896 (2011) · Zbl 1242.74193
[15] Hilber, H. M.; Hughes, T. J.R., Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics, Earthq. Eng. Struct. Dyn., 6, 1, 99-117 (1978)
[16] Hughes, T. J.R., (The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Civil and Mechanical Engineering (2000), Dover Publications) · Zbl 1191.74002
[17] Tamma, K. K.; Har, J.; Zhou, X.; Shimada, M.; Hoitink, A., An overview and recent advances in vector and scalar formalisms: Space/Time Discretizations in computational dynamics-A Unified Approach, Arch. Comput. Methods Eng., 18, 2, 119-283 (2011) · Zbl 1284.70005
[18] Bathe, K. J.; Baig, M. M.I., On a composite implicit time integration procedure for nonlinear dynamics, Comput. Struct., 83, 31-32, 2513-2524 (2005)
[19] Bathe, K. J., Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme, Comput. Struct., 85, 7-8, 437-445 (2007)
[20] Dong, S., BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys., 229, 8, 3019-3045 (2010) · Zbl 1307.74069
[21] Noh, G.; Bathe, K.-J., The Bathe time integration method with controllable spectral radius: The \(\rho_\infty \)-Bathe method, Comput. Struct., 212, 299-310 (2019)
[22] Malakiyeh, M. M.; Shojaee, S.; Bathe, K.-J., The Bathe time integration method revisited for prescribing desired numerical dissipation, Comput. Struct., 212, 289-298 (2019)
[23] Li, J.; Yu, K.; Tang, H., Further assessment of three Bathe algorithms and implementations for wave propagation problems, Int. J. Struct. Stab. Dyn., 21, 5, Article 2150073 pp. (2021) · Zbl 1535.65102
[24] Kim, W.; Reddy, J. N., An improved time integration algorithm: A collocation time finite element approach, Int. J. Struct. Stab. Dyn., 17, 2, Article 1750024 pp. (2016) · Zbl 1535.74643
[25] Kim, W.; Choi, S. Y., An improved implicit time integration algorithm: The generalized composite time integration algorithm, Comput. Struct., 196, 341-354 (2018)
[26] Li, J.; Yu, K., A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics, Arch. Appl. Mech., 90, 737-772 (2020)
[27] Li, J.; Yu, K., An alternative to the Bathe algorithm, Appl. Math. Model., 69, 255-272 (2019) · Zbl 1466.65047
[28] Li, J.; Yu, K., A simple truly self-starting and L-stable integration algorithm for structural dynamics, Int. J. Appl. Mech., 12, 10, 1-29 (2020)
[29] Kim, W., An improved implicit method with dissipation control capability: The simple generalized composite time integration algorithm, Appl. Math. Model., 81, 910-930 (2020) · Zbl 1481.70075
[30] Li, J.; Yu, K., A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics, Nonlinear Dynam., 102, 4, 2503-2530 (2020)
[31] Li, J.; Yu, K., Development of composite sub-step explicit dissipative algorithms with truly self-starting property, Nonlinear Dynam., 103, 2, 1911-1936 (2021) · Zbl 1517.65062
[32] Rezaiee-Pajand, M.; Karimi-Rad, M., More accurate and stable time integration scheme, Eng. Comput., 31, 4, 791-812 (2015)
[33] Li, J.; Yu, K.; Li, X., A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis, Nonlinear Dynam., 96, 4, 2475-2507 (2019)
[34] Wen, W. B.; Wei, K.; Lei, H. S.; Duan, S. Y.; Fang, D. N., A novel sub-step composite implicit time integration scheme for structural dynamics, Comput. Struct., 182, C, 176-186 (2017)
[35] Wen, W.; Deng, S.; Wang, N.; Duan, S.; Fang, D., An improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservation, Appl. Math. Model., 90, 78-100 (2021) · Zbl 1481.65109
[36] Li, J.; Yu, K.; He, H., A second-order accurate three sub-step composite algorithm for structural dynamics, Appl. Math. Model., 77, 1391-1412 (2020) · Zbl 1481.65107
[37] Noh, G.; Bathe, K.-J., An explicit time integration scheme for the analysis of wave propagations, Comput. Struct., 129, 178-193 (2013)
[38] Tarnow, N.; Simo, J. C., How to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation properties, Comput. Methods Appl. Mech. Engrg., 115, 3, 233-252 (1994)
[39] Fung, T. C., Complex-time-step Newmark methods with controllable numerical dissipation, Internat. J. Numer. Methods Engrg., 41, 1, 65-93 (1998) · Zbl 0916.73080
[40] Fung, T. C., Unconditionally stable higher-order Newmark methods by sub-stepping procedure, Comput. Methods Appl. Mech. Engrg., 147, 1-2, 61-84 (1997) · Zbl 0897.70002
[41] Fung, T. C., Third order complex-time-step methods for transient analysis, Comput. Methods Appl. Mech. Engrg., 190, 22-23, 2789-2802 (2001) · Zbl 0976.65087
[42] Zhang, H.; Zhang, R.; Xing, Y.; Masarati, P., On the optimization of \(n\)-sub-step composite time integration methods, Nonlinear Dynam., 102, 3, 1939-1962 (2020)
[43] Rezaiee-Pajand, M.; Esfehani, S.a. H.; Ehsanmanesh, H., An efficient weighted residual time integration family, Int. J. Struct. Stab. Dyn., 21, 8, Article 2150106 pp. (2021) · Zbl 1535.70055
[44] Rezaiee-Pajand, M.; Esfehani, S.a. H.; Karimi-Rad, M., Highly accurate family of time integration method, Struct. Eng. Mech., 67, 6, 603-616 (2018)
[45] Rezaiee-Pajand, M.; Hashemian, M.; Bohluly, A., A novel time integration formulation for nonlinear dynamic analysis, Aerosp. Sci. Technol., 69, 625-635 (2017)
[46] Idesman, A. V.; Schmidt, M.; Sierakowski, R. L., A new explicit predictor-multicorrector high-order accurate method for linear elastodynamics, J. Sound Vib., 310, 1, 217-229 (2008)
[47] Rezaiee-Pajand, M.; Hashemian, M., Modified differential transformation method for solving nonlinear dynamic problems, Appl. Math. Model., 47, 76-95 (2017) · Zbl 1446.74049
[48] Idesman, A. V., A new high-order accurate continuous Galerkin method for linear elastodynamics problems, Comput. Mech., 40, 2, 261-279 (2007) · Zbl 1178.74167
[49] Yu, K., A new family of generalized-\( \alpha\) time integration algorithms without overshoot for structural dynamics, Earthq. Eng. Struct. Dyn., 37, 12, 1389-1409 (2008)
[50] Fung, T. C.; Fan, S.; Sheng, G., Extrapolated Galerkin time finite elements, Comput. Mech., 17, 6, 398-405 (1996) · Zbl 0849.73066
[51] Namburu, R. R.; Tamma, K. K., A generalized \(\gamma_s\)-family of self-starting algorithms for computational structural dynamics, AIAA J. (1992)
[52] Soares, D., An implicit family of time marching procedures with adaptive dissipation control, Appl. Math. Model., 40, 4, 3325-3341 (2016) · Zbl 1452.70031
[53] Soares, D., A simple and effective single-step time marching technique based on adaptive time integrators, Internat. J. Numer. Methods Engrg., 109, 1344-1368 (2017) · Zbl 07874314
[54] Soares, D.; Almeida, V. B., An effective adaptive time domain formulation to analyse acoustic-elastodynamic coupled models, Comput. Struct., 189, 1-11 (2017)
[55] Belythscko, T.; Hughes, T. J., (Computational Methods for Transient Analysis. Computational Methods for Transient Analysis, Mechanics and Mathematical Methods - Series of Handbooks (1983), North-Holland) · Zbl 0521.00025
[56] Kennedy, C. A.; Carpenter, M. H., Diagonally implicit Runge-Kutta methods for stiff ODEs, Appl. Numer. Math., 146, 221-244 (2019) · Zbl 1437.65061
[57] The Julia Programming Language. URL https://julialang.org/.
[58] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Rev., 59, 1, 65-98 (2017) · Zbl 1356.68030
[59] Bazzi, G.; Anderheggen, E., The \(\rho \)-family of algorithms for time-step integration with improved numerical dissipation, Earthq. Eng. Struct. Dyn., 10, 4, 537-550 (1982)
[60] Cook, R. D.; Malkus, D. S.; Plesha, M. E.; Witt, R. J., Concepts and Applications of Finite Element Analysis (2001), Wiley
[61] Li, J.; Yu, K.; Li, X., An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics, Internat. J. Numer. Methods Engrg., 122, 4, 1089-1132 (2021) · Zbl 07863104
[62] Yue, B.; Guddati, M. N., Dispersion-reducing finite elements for transient acoustics, J. Acoust. Soc. Am., 118, 4, 2132-2141 (2005)
[63] He, H.; Tang, H.; Yu, K.; Li, J.; Yang, N.; Zhang, X., Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment, Chin. J. Aeronaut., 33, 9, 2357-2371 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.