×

Further assessment of three Bathe algorithms and implementations for wave propagation problems. (English) Zbl 1535.65102

Summary: This paper further analyzes three Bathe algorithms \(( \gamma \)-Bathe, \( \beta_1/ \beta_2\)-Bathe and \(\rho_\infty \)-Bathe) with their unknown properties revealed. The analysis shows firstly that three Bathe algorithms can cover two common integration schemes, trapezoidal rule and backward Euler formula, and that the second-order \(\beta_1/ \beta_2\)-Bathe algorithm is algebraically identical to the \(\rho_\infty \)-Bathe algorithm. Via formulation of the generalized two-sub-step Newmark algorithm, it is shown that the common Newmark method cannot be considered as a special case of the \(\rho_\infty \)-Bathe algorithm. For wave propagation problems, optimal Courant-Friedrichs-Lewy (CFL) numbers for reducing dispersion errors are found for the three Bathe algorithms by considering spatial and temporal discretizations simultaneously, while the modified integration rules are used for the element mass and stiffness matrices to reduce the anisotropy in wave propagating directions. The recommended optimal algorithmic parameters are given for the three Bathe algorithms to help users effectively solve various dynamic and wave propagation problems.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
70J35 Forced motions in linear vibration theory
Full Text: DOI

References:

[1] Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Civil and Mechanical Engineering, Dover Publications, 2000). · Zbl 1191.74002
[2] Bathe, K.-J., Finite Element Procedures, 2edn. (Prentice-Hall, Englewood Cliffs, NJ, 2014).
[3] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div.85(3) (1959) 67-94.
[4] Shao, H. and Cai, C., A three parameters algorithms for numerical integration of structural dynamic equations, Chin. J. Appl. Mech.5(4) (1988) 76-81.
[5] Chung, J. and Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\( \alpha\) method, J. Appl. Mech.60(2) (1993) 371-375. · Zbl 0775.73337
[6] Hilber, H. M., Hughes, T. J. R. and Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng. Struct. Dyn.5(3) (1977) 283-292.
[7] Wood, W., Bossak, M. and Zienkiewicz, O., An alpha modification of Newmark’s method, Int. J. Numeri. Methods Eng.15(10) (1980) 1562-1566. · Zbl 0441.73106
[8] Bazzi, G. and Anderheggen, E., The \(\rho \)-family of algorithms for time-step integration with improved numerical dissipation, Earthquake Eng. Struct. Dyn.10(4) (1982) 537-550.
[9] Wilson, E. L., Farhoomand, I. and Bathe, K. J., Nonlinear dynamic analysis of complex structures, Earthquake Eng. Struct. Dyn.1 (1973) 241.
[10] Hilber, H. M. and Hughes, T. J. R., Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics, Earthquake Eng. Struct. Dyn.6(1) (1978) 99-117.
[11] Hoff, C. and Pahl, P. J., Development of an implicit method with numerical dissipation for time integration algorithms in structural dynamics, Comput. Methods Appl. Mech. Eng.67(3) (1988) 367-385. · Zbl 0619.73002
[12] Bathe, K. J., Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme, Comput. Struct.85(7-8) (2007) 437-445.
[13] Rezaiee-Pajand, M. and Karimi-Rad, M., More accurate and stable time integration scheme, Eng. Comput.31(4) (2015) 791-812.
[14] Dong, S., BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys.229(8) (2010) 3019-3045. · Zbl 1307.74069
[15] Li, J., Yu, K. and He, H., A second-order accurate three sub-step composite algorithm for structural dynamics, Appl. Math. Model.77 (2020) 1391-1412. · Zbl 1481.65107
[16] Rezaiee-Pajand, M. and Sarafrazi, S. R., Nonlinear dynamic structural analysis using dynamic relaxation with zero damping, Comput. Struct.89(13-14) (2011) 1274-1285.
[17] Noh, G. and Bathe, K.-J., The Bathe time integration method with controllable spectral radius: The \(\rho_\infty \)-Bathe method, Comput. Struct.212 (2019) 299-310.
[18] Li, J., Yu, K. and Li, X., A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis, Nonlinear Dyn.96(4) (2019) 2475-2507.
[19] Rezaiee-Pajand, M., Sarafrazi, S. R. and Hashemian, M., Improving stability domains of the implicit higher order accuracy method, Int. J. Numer. Methods Eng.88(9) (2011) 880-896. · Zbl 1242.74193
[20] Ji, Y. and Xing, Y., A two-sub-step generalized central difference method for general dynamics, Int. J. Struct. Stab. Dyn. (2020) 2050071. · Zbl 1535.65133
[21] Bathe, K. J. and Baig, M. M. I., On a composite implicit time integration procedure for nonlinear dynamics, Comput. Struct.83(31-32) (2005) 2513-2524.
[22] Bathe, K.-J. and Noh, G., Insight into an implicit time integration scheme for structural dynamics, Comput. Struct.98-99 (2012) 1-6.
[23] Malakiyeh, M. M., Shojaee, S. and Bathe, K.-J., The Bathe time integration method revisited for prescribing desired numerical dissipation, Comput. Struct.212 (2019) 289-298.
[24] Kwon, S.-B., Bathe, K.-J. and Noh, G., An analysis of implicit time integration schemes for wave propagations, Comput. Struct.230 (2020) 106188.
[25] Li, J., Li, X. and Yu, K., Enhanced studies on the composite sub-step algorithm for structural dynamics: The Bathe-like algorithm, Appl. Math. Model.80 (2020) 33-64. · Zbl 1481.65101
[26] Noh, G., Ham, S. and Bathe, K.-J., Performance of an implicit time integration scheme in the analysis of wave propagations, Comput. Structut.123 (2013) 93-105.
[27] Noh, G. and Bathe, K.-J., Further insights into an implicit time integration scheme for structural dynamics, Comput. Struct.202 (2018) 15-24.
[28] Klarmann, S. and Wagner, W., Enhanced studies on a composite time integration scheme in linear and non-linear dynamics, Comput. Mech.55(3) (2015) 455-468. · Zbl 1311.65093
[29] Noh, G. and Bathe, K.-J., For direct time integrations: A comparison of the newmark and \(\rho_\infty \)-Bathe schemes, Comput. Struct.225 (2019) 106079.
[30] Kim, W. and Reddy, J. N., A comparative study of implicit and explicit composite time integration schemes, Int. J. Struct. Stab. Dyn.20 (2020) 2041003. · Zbl 1535.65094
[31] Kim, W. and Reddy, J. N., An improved time integration algorithm: A collocation time finite element approach, Int. J. Struct. Stab. Dyn.17(2) (2016) 1750024. · Zbl 1535.74643
[32] Li, J. and Yu, K., An alternative to the Bathe algorithm, Appl. Math. Model.69 (2019) 255-272. · Zbl 1466.65047
[33] Yue, B. and Guddati, M. N., Dispersion-reducing finite elements for transient acoustics, J. Acoust. Soc. Am.118(4) (2005) 2132-2141.
[34] Rezaiee-Pajand, M., Hashemian, M. and Bohluly, A., A novel time integration formulation for nonlinear dynamic analysis, Aerosp. Sci. Technol.69 (2017) 625-635.
[35] Mullen, R. and Belytschko, T., Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation, Int. J. Numer. Methods Eng.18(1) (1982) 11-29. · Zbl 0466.73102
[36] Li, J., Yu, K. and Li, X., An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics, Int. J. Numer. Methods Eng.122 (2021) 1089-1132. · Zbl 07863104
[37] Wen, W., Tao, Y., Duan, S., Yan, J., Wei, K. and Fang, D., A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis, Comput. Struct.190 (2017) 126-149.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.