×

A high-resolution finite volume seismic model to generate seafloor deformation for tsunami modeling. (English) Zbl 1395.86004

Summary: A high-resolution finite volume method approach to incorporating time-dependent slip across rectangular subfaults when modeling general fault geometry is presented. The fault slip is induced by a modification of the Riemann problem to the linear elasticity equations across cell interfaces aligned with the subfaults. This is illustrated in the context of the high-resolution wave-propagation algorithms that are implemented in the open source Clawpack software (www.clawpack.org), but this approach could be easily incorporated into other Riemann solver based numerical methods. Surface deformation results are obtained in both two and three dimensions and compared to those given by the steady-state, homogeneous half-space Okada solution.

MSC:

86-08 Computational methods for problems pertaining to geophysics
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
86A15 Seismology (including tsunami modeling), earthquakes

Software:

GEOCLAW; CLAWPACK

References:

[1] Berger, M.J., George, D.L., LeVeque, R.J., Mandli, K.T.: The GeoClaw software for depth-averaged flows with adaptive refinement. Adv. Water Res. 34, 1195-1206 (2011) · doi:10.1016/j.advwatres.2011.02.016
[2] Clawpack Development Team: Clawpack Software. Version 5.3.1 (2014). doi:10.5281/zenodo.50982
[3] Dutykh, D., Dias, F.: Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Math. Comput. Simul. 80(4), 837-848 (2009). doi:10.1016/j.matcom.2009.08.036 · Zbl 1178.86010 · doi:10.1016/j.matcom.2009.08.036
[4] Dutykh, D., Mitsotakis, D., Gardeil, X., Dias, F.: On the use of the finite fault solution for tsunami generation problems. Theor. Comput. Fluid Dyn. 27(1-2), 177-199 (2013). doi:10.1007/s00162-011-0252-8 · doi:10.1007/s00162-011-0252-8
[5] Hartzell, S., Liu, P., Mendoza, C.: The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation. J. Geophys. Res. Solid Earth 101(B9), 20091-20108 (1996). doi:10.1029/96JB01883 · doi:10.1029/96JB01883
[6] Ji, C., Wald, D.J., Helmberger, D.V.: Source description of the 1999 Hector Mine, California, earthquake, part I: wavelet domain inversion theory and resolution analysis. Bull. Seismol. Soc. Am. 92(4), 1192-1207 (2002). doi:10.1785/0120000916 · doi:10.1785/0120000916
[7] Kozdon, J.E., Dunham, E.M.: Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth. Planet. Sci. Lett. 396, 56-65 (2014). doi:10.1016/j.epsl.2014.04.001 · doi:10.1016/j.epsl.2014.04.001
[8] Lemoine, G.I.: Three-dimensional mapped-grid finite volume modeling of poroelastic-fluid wave propagation. SIAM J. Sci. Comput. 38, B808-836 (2016). doi:10.1137/130934866 · Zbl 1456.65084 · doi:10.1137/130934866
[9] Lemoine, G.I., Ou, M.Y.: Finite volume modeling of poroelastic-fluid wave propagation with mapped grids. SIAM J. Sci. Comput. 36, B396-B426 (2014). doi:10.1137/130920824 · Zbl 1299.76160 · doi:10.1137/130920824
[10] Lemoine, G.I., Ou, M.Y., LeVeque, R.J.: High-resolution finite volume modeling of wave propagation in orthotropic poroelastic media. SIAM J. Sci. Comput. 35, B176-B206 (2013). doi:10.1137/120878720 · Zbl 1342.74173 · doi:10.1137/120878720
[11] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[12] LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modeling with adaptively refined finite volume methods. Acta Numer. 20, 211-289 (2011) · Zbl 1426.76394 · doi:10.1017/S0962492911000043
[13] Maeda, T., Furumura, T.: FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure Appl. Geophys. 170, 109-127 (2011). doi:10.1007/s00024-011-0430-z · doi:10.1007/s00024-011-0430-z
[14] Maeda, T., Furumura, T., Noguchi, S., Takemura, S., Sakai, S., Shinohara, M., Iwai, K., Lee, S.J.: Seismic- and tsunami-wave propagation of the 2011 off the Pacific Coast of Tohoku earthquake as inferred from the tsunami-coupled finite-difference simulation. Bull. Seismol. Soc. Am. 103, 1456-1472 (2013). doi:10.1785/0120120118 · doi:10.1785/0120120118
[15] Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2, e68 (2016). doi:10.7717/peerj-cs.68 · doi:10.7717/peerj-cs.68
[16] Melgar, D., Bock, Y.: Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. J. Geophys. Res. Solid Earth 120(5), 2014JB011832 (2015). doi:10.1002/2014JB011832
[17] Nosov, M.A.: Tsunami waves of seismic origin: the modern state of knowledge. Izv. Atmos. Ocean. Phys. 50(5), 474-484 (2014). doi:10.1134/S0001433814030098 · doi:10.1134/S0001433814030098
[18] Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135-1154 (1985)
[19] Saito, T., Tsushima, H.: Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: toward realistic tests of monitoring systems. J. Geophys. Res. Solid Earth 121(11), 8175-8195 (2016). doi:10.1002/2016JB013195 · doi:10.1002/2016JB013195
[20] Titov, V.V., Gonzalez, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., Venturato, A.J.: Real-time tsunami forecasting: challenges and solutions. Nat. Hazards 35(1), 35-41 (2005). doi:10.1007/s11069-004-2403-3 · doi:10.1007/s11069-004-2403-3
[21] Vogl, C.J., LeVeque, R.J.: Code Archive (2017). doi:10.5281/zenodo.569351
[22] Wilcock, W.S.D., Schmidt, D.A., Vidale, J.E., et al.: Sustained offshore geophysical monitoring in Cascadia. Whitepaper, The Subduction Zone Observatory Workshop, Boise (2016). http://faculty.washington.edu/rjl/pubs/SZOworkshop2016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.