×

Hadamard Itô-Doob stochastic fractional order systems. (English) Zbl 1517.60064

Summary: In this paper, we study the existence and uniqueness of Hadamard Itô-Doob Stochastic Fractional Order Systems (HIDSFOS) using the Picard iteration method. Different from the previous works, our paper presents a new theory using the Hadamard fractional integral. We have proved the convergence of the solution of the averaged HIDSFOS to that of the standard HIDSFOS in the sense of the mean square and also in probability. Some examples are given at the end of this paper to illustrate our theoretical results.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34A08 Fractional ordinary differential equations
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI

References:

[1] S. M. J.-E. Y. Abbas Benchohra Lazreg Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Solit. Fractals, 102, 47-71 (2017) · Zbl 1374.34004 · doi:10.1016/j.chaos.2017.03.010
[2] M. Abouagwa and J. Li, Approximation properties for solutions to Itô-Doob stochastic fractional differential equations with non-Lipschitz coefficients, Stoch. Dyn., 19 (2019), 1950029, 21 pp. · Zbl 1422.34011
[3] M. J. J. Abouagwa Liu Li, Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type, Appl. Math. Comput., 329, 143-153 (2018) · Zbl 1427.34079 · doi:10.1016/j.amc.2018.02.005
[4] B. Ahmad, A. Alsaedi, S. K. Ntouyas and J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Switzerland, 2017. · Zbl 1370.34002
[5] A. Ahmadova and N. I. Mahmudov, Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations, Statistics and Probability Letters, 168 (2021), 108949, 6 pp. · Zbl 1458.34011
[6] R. Almeida, Caputo-Hadamard fractional derivatives of variable order, Numer Funct Anal Optim., 38, 1-19 (2017) · Zbl 1364.26006 · doi:10.1080/01630563.2016.1217880
[7] T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional Calculus with Applications in Mechanics, Wiley-ISTE, 2014. · Zbl 1291.74001
[8] D. Baleanu, J. A. Machado and A. C. Luo, Fractional Dynamics and Control, Springer, New York, 2012.
[9] A. Ben Makhlouf, H. Arfaoui, S. Boulaaras and S. Dhahri, Finite time stability of 2d fractional hyperbolic system with time delay, Journal of Function Spaces, 2022 (2022), Article ID 6125463, 8 pp. · Zbl 1495.35027
[10] A. Ben Makhlouf, E. El-hady, S. Boulaaras and M. A. Hammami, Stability analysis for differential equations of the general conformable type, Complexity, 2022 (2022), Article ID 7283252.
[11] A. Ben Makhlouf, E. El-hady, S. Boulaaras and L. Mchiri, Stability results of some fractional neutral integrodifferential equations with delay, Journal of Function Spaces, 2022 (2022), Article ID 8211420, 7 pp. · Zbl 1489.45012
[12] A. Ben Makhlouf and L. Mchiri, Some results on the study of Caputo-Hadamard fractional stochastic differential equations, Chaos, Solitons and Fractals, 155 (2022), 111757, 7 pp. · Zbl 1498.60198
[13] E. El-hady, A. Ben Makhlouf, S. Boulaaras and L. Mchiri, Ulam-Hyers-Rassias stability of nonlinear differential equations with riemann-liouville fractional derivative, Journal of Function Spaces, 2022 (2022), Article ID 7827579, 6 pp. · Zbl 1494.34027
[14] R. B. Guo Pei, Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson point processes, Stoch. Anal. Appl., 36, 751-766 (2018) · Zbl 1401.60090 · doi:10.1080/07362994.2018.1461567
[15] R. Z. Has’minskii, On the principle of averaging the Itô stochastic differential equations, Kybernetika (Prague), 4, 260-279 (1968) · Zbl 0231.60045
[16] G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to \((dt)^a\), Appl. Math. Lett., 18, 739-748 (2005) · Zbl 1082.60029 · doi:10.1016/j.aml.2004.05.014
[17] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006. · Zbl 1092.45003
[18] V. G. A. I. T. M. Kolomiets Mel’nikov Mukhitdinov, Averaging of stochastic systems of integral differential equations with Poisson noise, Ukr. Math. J., 43, 242-246 (1991) · Zbl 0735.60060 · doi:10.1007/BF01060515
[19] W. Mao and X. Mao, An averaging principle for neutral stochastic functional differential equations driven by Poisson random measure, Adv. Differ. Equ., 2016 (2016), Paper No. 77, 18 pp. · Zbl 1419.60046
[20] W. Mao, S. You, X. Wu and X. Mao, On the averaging principle for stochastic delay differential equations with jumps, Adv. Differ. Equ., 2015 (2015), 70, 19 pp. · Zbl 1346.60087
[21] X. Mao, Stochastic Differential Equations and Applications, Ellis Horwood, Chichester, U.K, 1997. · Zbl 0892.60057
[22] J.-C. Pedjeu and G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos, Solitons and Fractals, 45 (2012), 279-293. · Zbl 1282.60058
[23] B. Y. G. Pei Xu Yin, Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations, Nonlinear Anal., 160, 159-176 (2017) · Zbl 1370.60108 · doi:10.1016/j.na.2017.05.005
[24] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. · Zbl 0924.34008
[25] I. M. D. D. Stoyanov Bainov, The averaging method for a class of stochastic differential equations, Ukr. Math. J., 26, 186-194 (1974) · Zbl 0294.60051
[26] W. Wang and Z. Guo, Optimal index and averaging principle for Itô-Doob stochastic fractional differential equations, Stoch. Dyn., 22 (2022), Paper No. 2250018, 14 pp. · Zbl 1510.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.