×

Dirac gauge theory for topological spinors in \(3+1\) dimensional networks. (English) Zbl 1525.83012

Summary: Gauge theories on graphs and networks are attracting increasing attention not only as approaches to quantum gravity but also as models for performing quantum computation. Here we propose a Dirac gauge theory for topological spinors in \(3+1\) dimensional networks associated to an arbitrary metric. Topological spinors are the direct sum of 0-cochains and 1-cochains defined on a network and describe a matter field defined on both nodes and links of a network. Recently in [G. Bianconi, J. Phys. Complex. 2, No. 3, Article ID 035022, 23 p. (2021; doi:10.1088/2632-072X/ac19be)] it has been shown that topological spinors obey the topological Dirac equation driven by the discrete Dirac operator. In this work we extend these results by formulating the Dirac equation on weighted and directed \(3+1\) dimensional networks which allow for the treatment of a local theory. The commutators and anti-commutators of the Dirac operators are non vanishing an they define the curvature tensor and magnetic field of our theory respectively. This interpretation is confirmed by the non-relativistic limit of the proposed Dirac equation. In the non-relativistic limit of the proposed Dirac equation the sector of the spinor defined on links follows the Schrödinger equation with the correct giromagnetic moment, while the sector of the spinor defined on nodes follows the Klein-Gordon equation and is not negligible. The action associated to the proposed field theory comprises of a Dirac action and a metric action. We describe the gauge invariance of the action under both abelian and non-abelian transformations and we propose the equation of motion of the field theory of both Dirac and metric fields. This theory can be interpreted as a limiting case of a more general gauge theory valid on any arbitrary network in the limit of almost flat spaces.

MSC:

83C45 Quantization of the gravitational field
68Q12 Quantum algorithms and complexity in the theory of computing
81P68 Quantum computation
90C35 Programming involving graphs or networks
39A12 Discrete version of topics in analysis
81S05 Commutation relations and statistics as related to quantum mechanics (general)
35J93 Quasilinear elliptic equations with mean curvature operator
78A30 Electro- and magnetostatics
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
83C10 Equations of motion in general relativity and gravitational theory

References:

[1] Bianconi, G., The topological Dirac equation of networks and simplicial complexes, J. Phys. Complex., 2 (2021) · doi:10.1088/2632-072X/ac19be
[2] Rothe, H. J., Lattice Gauge Theories: An Introduction (2012), Singapore: World Scientific Publishing Company, Singapore · Zbl 1255.81001
[3] Dalmonte, M.; Montangero, S., Lattice gauge theory simulations in the quantum information era, Contemp. Phys., 57, 388-412 (2016) · doi:10.1080/00107514.2016.1151199
[4] Carmen Banuls, M., Simulating lattice gauge theories within quantum technologies, Eur. Phys. J. D, 74, 1-42 (2020) · doi:10.1140/epjd/e2020-100571-8
[5] Aidelsburger, M.; Nascimbene, S.; Goldman, N., Artificial gauge fields in materials and engineered systems, C. R. Physique, 19, 394-432 (2018) · doi:10.1016/j.crhy.2018.03.002
[6] Surace, F. M.; Mazza, P. P.; Giudici, G.; Lerose, A.; Gambassi, A.; Dalmonte, M., Lattice gauge theories and string dynamics in Rydberg atom quantum simulators, Phys. Rev. X, 10 (2020) · doi:10.1103/PhysRevX.10.021041
[7] Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M., Simulation of non-Abelian gauge theories with optical lattices, Nat. Commun., 4, 1-8 (2013) · doi:10.1038/ncomms3615
[8] Kitaev, A. Y., Fault-tolerant quantum computation by anyons, Ann. Phys., NY, 303, 2-30 (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[9] Bianconi, G., Higher-Order Networks: An Introduction to Simplicial Complexes (2021), Cambridge: Cambridge University Press, Cambridge · Zbl 1494.82002
[10] Millán, A. P.; Torres, J. J.; Bianconi, G., Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.218301
[11] Battiston, F., The physics of higher-order interactions in complex systems, Nat. Phys., 17, 1093-8 (2021) · doi:10.1038/s41567-021-01371-4
[12] Carletti, T.; Giambagli, L.; Bianconi, G., Global topological synchronization on simplicial and cell complexes, Phys. Rev. Lett., 130 (2023) · doi:10.1103/PhysRevLett.130.187401
[13] Post, O., First order approach and index theorems for discrete and metric graphs, Annales Henri Poincaré, vol 10, pp 823-66 (2009), Berlin: Springer, Berlin · Zbl 1206.81044
[14] Davies, E. B., Analysis on graphs and noncommutative geometry, J. Funct. Anal., 111, 398-430 (1993) · Zbl 0793.46043 · doi:10.1006/jfan.1993.1019
[15] Requardt, M., Dirac operators and the calculation of the Connes metric on arbitrary (infinite) graphs, J. Phys. A: Math. Gen., 35, 759 (2002) · Zbl 1041.81069 · doi:10.1088/0305-4470/35/3/319
[16] Hinz, M.; Teplyaev, A., Dirac and magnetic Schrödinger operators on fractals, J. Funct. Anal., 265, 2830-54 (2013) · Zbl 1319.47037 · doi:10.1016/j.jfa.2013.07.021
[17] Lloyd, S.; Garnerone, S.; Zanardi, P., Quantum algorithms for topological and geometric analysis of data, Nat. Commun., 7, 1-7 (2016) · doi:10.1038/ncomms10138
[18] Calmon, L.; Restrepo, J. G.; Torres, J. J.; Bianconi, G., Dirac synchronization is rhythmic and explosive, Commun. Phys., 5, 253 (2022) · doi:10.1038/s42005-022-01024-9
[19] Giambagli, L.; Calmon, L.; Muolo, R.; Carletti, T.; Bianconi, G., Diffusion-driven instability of topological signals coupled by the Dirac operator, Phys. Rev. E, 106 (2022) · doi:10.1103/PhysRevE.106.064314
[20] Calmon, L.; Khrisnagopal, S.; Bianconi, G., Local Dirac synchronization on networks, Chaos, 33 (2023) · Zbl 07881905 · doi:10.1063/5.0132468
[21] Fillion-Gourdeau, F.; Herrmann, H. J.; Mendoza, M.; Palpacelli, S.; Succi, S., Formal analogy between the dirac equation in its Majorana form and the discrete-velocity version of the boltzmann kinetic equation, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.160602
[22] Flouris, K.; Jimenez, M. M.; Herrmann, H. J., Curvature-induced quantum spin-hall effect on a möbius strip, Phys. Rev. B, 105 (2022) · doi:10.1103/PhysRevB.105.235122
[23] Witten, E., Supersymmetry and Morse theory, J. Differ. Geom., 17, 661-92 (1982) · Zbl 0499.53056 · doi:10.4310/jdg/1214437492
[24] Connes, A.; Marcolli, M., Noncommutative Geometry, Quantum Fields and Motives, vol 55 (2019), Providence, RI: American Mathematical Society, Providence, RI
[25] Beggs, E. J.; Majid, S., Quantum Riemannian Geometry, vol 355 (2020), Berlin: Springer, Berlin · Zbl 1436.53001
[26] Lira-Torres, E.; Majid, S., Geometric Dirac operator on the fuzzy sphere, Lett. Math. Phys., 112, 1-22 (2022) · Zbl 1512.58006 · doi:10.1007/s11005-021-01499-7
[27] Cipriani, F.; Guido, D.; Isola, T.; Sauvageot, J-L, Spectral triples for the Sierpinski gasket, J. Funct. Anal., 266, 4809-69 (2014) · Zbl 1316.28006 · doi:10.1016/j.jfa.2014.02.013
[28] Paschke, M.; Sitarz, A., Discrete spectral triples and their symmetries, J. Math. Phys., 39, 6191-205 (1998) · Zbl 0934.58006 · doi:10.1063/1.532623
[29] Krajewski, T., Classification of finite spectral triples, J. Geom. Phys., 28, 1-30 (1998) · Zbl 0932.58006 · doi:10.1016/S0393-0440(97)00068-5
[30] Bolte, J.; Harrison, J., Spectral statistics for the Dirac operator on graphs, J. Phys. A: Math. Gen., 36, 2747 (2003) · Zbl 1038.05057 · doi:10.1088/0305-4470/36/11/307
[31] Bolte, J.; Harrison, J., The spin contribution to the form factor of quantum graphs, J. Phys. A: Math. Gen., 36, L433 (2003) · Zbl 1047.81035 · doi:10.1088/0305-4470/36/27/101
[32] Fijavž, M. K.; Mugnolo, D.; Nicaise, S., Linear hyperbolic systems on networks: well-posedness and qualitative properties, ESAIM: COCV, 27, 7 (2021) · Zbl 1523.47051 · doi:10.1051/cocv/2020091
[33] Fijavž, M. K.; Mugnolo, D.; Nicaise, S., Linear hyperbolic systems on networks (2020)
[34] Fijavž, M. K.; Mugnolo, D.; Nicaise, S., Dynamic transmission conditions for linear hyperbolic systems on networks, J. Evol. Equ., 21, 3639-73 (2021) · Zbl 1533.47041 · doi:10.1007/s00028-021-00715-0
[35] Anné, C.; Torki-Hamza, N., The Gauss-Bonnet operator of an infinite graph, Anal. Math. Phys., 5, 137-59 (2015) · Zbl 1323.05095 · doi:10.1007/s13324-014-0090-0
[36] Athmouni, N.; Baloudi, H.; Damak, M.; Ennaceur, M., The magnetic discrete laplacian inferred from the Gauß-Bonnet operator and application, Ann. Funct. Anal., 12, 33 (2021) · Zbl 1460.05108 · doi:10.1007/s43034-021-00119-8
[37] Miranda, P.; Parra, D.; Raikov, G., Spectral asymptotics at thresholds for a Dirac-type operator on Z^2, J. Funct. Anal., 284 (2023) · Zbl 1502.35071 · doi:10.1016/j.jfa.2022.109743
[38] Parra, D., Spectral and scattering theory for Gauss-Bonnet operators on perturbed topological crystals, J. Math. Anal. Appl., 452, 792-813 (2017) · Zbl 1365.81054 · doi:10.1016/j.jmaa.2017.03.002
[39] Miranda, P.; Parra, D., Continuum limit for a discrete Hodge-Dirac operator on square lattices, Lett. Math. Phys., 113, 45 (2023) · Zbl 1530.47017 · doi:10.1007/s11005-023-01669-9
[40] Oriti, D., Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1168.83002
[41] Baez, J. C., Spin networks in gauge theory, Adv. Math., 117, 253-72 (1996) · Zbl 0843.58012 · doi:10.1006/aima.1996.0012
[42] Matsuura, S.; Ohta, K., Supersymmetric gauge theory on the graph, Progr. Theor. Exp. Phys., 2022, 043B01 (2022) · Zbl 1497.81058 · doi:10.1093/ptep/ptac018
[43] Jiang, S., Gauge theory on graphs (2022)
[44] Ambjørn, J.; Jurkiewicz, J.; Loll, R., Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett., 93 (2004) · Zbl 1246.83059 · doi:10.1103/PhysRevLett.93.131301
[45] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity: an Elementary Introduction to Quantum Gravity and Spinfoam Theory (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1432.81065
[46] Calcagni, G.; Oriti, D.; Thürigen, J., Laplacians on discrete and quantum geometries, Class. Quantum Grav., 30 (2013) · Zbl 1271.83028 · doi:10.1088/0264-9381/30/12/125006
[47] Lionni, L., Colored Discrete Spaces: Higher Dimensional Combinatorial Maps and Quantum Gravity (2018), Berlin: Springer, Berlin · Zbl 1406.81007
[48] Benedetti, D., Fractal properties of quantum spacetime, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.111303
[49] Donà, P.; Eichhorn, A.; Percacci, R., Matter matters in asymptotically safe quantum gravity, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.084035
[50] Codello, A.; Percacci, R.; Rahmede, C., Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Ann. Phys., NY, 324, 414-69 (2009) · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[51] Nakahara, M., Geometry, Topology and Physics (2003), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1090.53001
[52] Eichhorn, A.; Pauly, M., A sprinkling of hybrid-signature discrete spacetimes in real-world networks (2021)
[53] Reitz, M.; Bianconi, G., The higher-order spectrum of simplicial complexes: a renormalization group approach, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.82042 · doi:10.1088/1751-8121/ab9338
[54] Konopka, T.; Markopoulou, F.; Severini, S., Quantum graphity: a model of emergent locality, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.104029
[55] Trugenberger, C. A., Quantum gravity as an information network self-organization of a 4D universe, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084014
[56] Trugenberger, C. A., Combinatorial quantum gravity: geometry from random bits, J. High Energy Phys., JHEP09(2017)045 (2017) · Zbl 1382.83046 · doi:10.1007/JHEP09(2017)045
[57] Kleftogiannis, I.; Amanatidis, I., Physics in nonfixed spatial dimensions via random networks, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.024141
[58] Bianconi, G.; Rahmede, C., Emergent hyperbolic network geometry, Sci. Rep., 7, 1-9 (2017) · doi:10.1038/srep41974
[59] Bianconi, G.; Rahmede, C., Network geometry with flavor: from complexity to quantum geometry, Phys. Rev. E, 93 (2016) · doi:10.1103/PhysRevE.93.032315
[60] Zhihao, W.; Menichetti, G.; Rahmede, C.; Bianconi, G., Emergent complex network geometry, Sci. Rep., 5, 1-12 (2015) · doi:10.1038/srep10073
[61] Chen, S.; Plotkin, S. S., Statistical mechanics of graph models and their implications for emergent spacetime manifolds, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.084011
[62] Akara-pipattana, P.; Chotibut, T.; Evnin, O., The birth of geometry in exponential random graphs, J. Phys. A: Math. Theor., 54 (2021) · Zbl 1520.05085 · doi:10.1088/1751-8121/ac2474
[63] Kleftogiannis, I.; Amanatidis, I., Emergent spacetime from purely random structures (2022)
[64] Anand, K.; Bianconi, G.; Severini, S., Shannon and von neumann entropy of random networks with heterogeneous expected degree, Phys. Rev. E, 83 (2011) · doi:10.1103/PhysRevE.83.036109
[65] Biamonte, J.; Faccin, M.; De Domenico, M., Complex networks from classical to quantum, Commun. Phys., 2, 1-10 (2019) · doi:10.1038/s42005-019-0152-6
[66] De Domenico, M.; Biamonte, J., Spectral entropies as information-theoretic tools for complex network comparison, Phys. Rev. X, 6 (2016) · doi:10.1103/PhysRevX.6.041062
[67] Böttcher, L.; Porter, M. A., Complex networks with complex weights (2022)
[68] De Domenico, M.; Nicosia, V.; Arenas, A.; Latora, V., Structural reducibility of multilayer networks, Nat. Commun., 6, 1-9 (2015) · doi:10.1038/ncomms7864
[69] Nokkala, J.; Piilo, J.; Bianconi, G., Probing the spectral dimension of quantum network geometries, J. Phys. Complex., 2 (2020) · doi:10.1088/2632-072X/abaf9b
[70] Nokkala, J.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J., Complex quantum networks as structured environments: engineering and probing, Sci. Rep., 6, 1-7 (2016) · doi:10.1038/srep26861
[71] Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V., Reconfigurable optical implementation of quantum complex networks, New J. Phys., 20 (2018) · doi:10.1088/1367-2630/aabc77
[72] Eckmann, B., Harmonische funktionen und randwertaufgaben in einem komplex, Comment. Math. Helv., 17, 240-55 (1944) · Zbl 0061.41106 · doi:10.1007/BF02566245
[73] Horak, D.; Jost, Jurgen, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244, 303-36 (2013) · Zbl 1290.05103 · doi:10.1016/j.aim.2013.05.007
[74] Desbrun, M.; Hirani, A. N.; Leok, M.; Marsden, J. E., Discrete exterior calculus (2005)
[75] Grady, L. J.; Polimeni, J. R., Discrete Calculus: Applied Analysis on Graphs for Computational Science, vol 3 (2010), Berlin: Springer, Berlin · Zbl 1195.68074
[76] Lim, L-H, Hodge Laplacians on graphs, SIAM Rev., 62, 685-715 (2020) · Zbl 1453.05061 · doi:10.1137/18M1223101
[77] Tee, P.; Trugenberger, C. A., Enhanced Forman curvature and its relation to Ollivier curvature, Europhys. Lett., 133 (2021) · doi:10.1209/0295-5075/133/60006
[78] Dirac, P. A M., The quantum theory of the electron, Proc. R. Soc. A, 117, 610-24 (1928) · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[79] Thaller, B., The Dirac Equation (2013), Heidelberg: Springer, Heidelberg · Zbl 0881.47021
[80] Pais, A.; Jacob, M.; Olive, D. I.; Atiyah, M. F., Paul Dirac: The Man and His Work (2005), Cambridge: Cambridge University Press, Cambridge
[81] Baccini, F.; Geraci, F.; Bianconi, G., Weighted simplicial complexes and their representation power of higher-order network data and topology, Phys. Rev. E, 106 (2022) · doi:10.1103/PhysRevE.106.034319
[82] Chung, F. R K., Spectral Graph Theory, vol 92 (1997), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0867.05046
[83] Ryder, L. H., Quantum Field Theory (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0893.00008
[84] Peskin, M. E., An Introduction to Quantum Field Theory (2018), Boca Raton, FL: CRC Press, Boca Raton, FL
[85] Majorana, E., Teoria simmetrica dell’elettrone e del positrone, Il Nuovo Cimento, 14, 171-84 (1937) · Zbl 0016.42707 · doi:10.1007/BF02961314
[86] Wilczek, F., Majorana returns, Nat. Phys., 5, 614-8 (2009) · doi:10.1038/nphys1380
[87] Majid, S., Dirac operator associated to a quantum metric (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.